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ABSTRACT

The linea.rized equations describing the propagation

of the normal modes in a plasma filled waveguide at micro-

wave frequencies and in the presence of an axial constant

magnetlo field are derived from moments of the Boltzmann

equation. Celliaiens are retained. For two cases where the

plasma is assumed to be drifting but U_iform or stationary

but non-uniform in the transverse plane it is possible

to completely solve for the fields by solving a set of

coupled equations for the axial electric and magnetic

_- _ _........ _ to bea.fields and the pressure. If _**_ p_mA.= _O _OOU*,A_U

stationary and uniform these reduce to a set of coupled

Helmholtz equations. Solutions for this case are considered

in detail. The equations can be simplified considerably

and cas_ into a form very similar to those used to des-

cribe wave propagation in a cold plasma. Solutions are

obtained by employing an Iterative technique.
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DEFINITION OF SYMBOLS

The following is a tabulation of the symbols used

in this. MKS units are used throughout.

m - radian excitation frequency

C - speed of light

¢o - permi_ivity of free space = 8°854 x 10 -12 farad/mo

_o - permeability of free space = 4w x 10 -7 henries/m,

u = adiabatic electron sound speed

m - mass of the electron = 9.107 x 10 -31 Kg,

q - charge of the electron = 1.602 x 10 -19 coul.

B o - magnitude of externally applied magnetic field

N O - gross electron background number density

Noq2 1/2

m° = (_o m) - electron plasma frequency

qB o

mB " ---m electron cyclotron frequency

mCE - hybrid-E mode cutoff frequency

v - collision frequency for momentum transfer

T - Kelvin temperature

_0

0

k = _/C
O

h 0 _ _/u

ix

I
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!
B - axial propagation wave number

I - l-J_
2

It

I -- i- oKp K'--'_

2

KB -- i- ---_
K

I - _ - 2 _B 2

KH = Kv - LO --_v

I kc 2 = ko2 - 82

I _p2 _ ho2KH_ 82KB

I Hnormalize d

i UNoqp = ---j- ,

=_ Hactual

!

!
- VnormalizedVactual uNoq uo

<en,Wm) - scalar product of two vectors, en and wm

!

!

!
X

!

!

!
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CHAPTER I

INTRODUCTION

In recent years the topic of wave propagation in a gaseous

plasma has been studied extensively. Most of the early work in this

I

I

I

area was concerned with determining the dispersion characteristics

of waves in an unbounded plasma. More recently, a number of bounded

plasma problems have been investigated. In this work we shall be

concerned only with the high frequency behavior of cylindrically

bounded plasmas. The plasma will generally be anisotropic since it

I w%ll be assumed that an axial steady magnetic field is applied.

I
Before embarking on any plasma problem it is necessary choose a

model to describe the motion of the plasma constituents(generally

I

I

ions, electrons and neutrals). The most satisfactory derivation of

all the macroscopic plasma models is obtained by computing the

moments of the Boltzmann equation. [1-2] Generally, this procedure

can be carried out for each species of the plasma, the resulting

equations being the so called n-fluid equations.

I The process of computing moments of Boltzmann's equation yields

I

I

I

an open set of equations since each higher moment introduces

additional unknown quantities. The procedure must therefore be

terminated or truncated in some manner. Two possible methods of



tm_ncatlon yield tim oold plasma and warm plasma models.

If only the flmst two moments of the Boltzmann equation are

retained the _ pressure terms must be dropped and cram obtains

the cold plasma model° In high frequency problems the motion of the

ions and neutrals is usually neglected and the ions are considered

to provide simply a neutralizing stationary background for the

electmans. This model is knam_ as the Lorentz gas model. Sincm the

term frcm the collision Integral is still present it is generally

simplified by either neEl_tlng collisions altogether or by asstmlng

the effect of collisions can be accounted for by introducing a

collision frequency.

The collisionless Lorentz model has been used to study several

classes of bounded problems. These include wave propagation on

bounded plmmm cylinders [3] , analysis of plasma beam amplifiers [4-6]-

and the In_tlgation of wave propagatlon in plasma filled wave-

guide [7-13]o This model has the advantage of being the simplest

possible plasma model and hence the easiest to analyze° However,

neglecting collisions can be a very poor assumption, particularly

at rescrmmces where the particles may move very rapidly. In

particular, dispersion curves may be obtained from the colllslonless

equatlams that have very sharp rescnances and interesting behavior,

but t1_sn the inclusion of collisions will be so highly attenuat__d

as to become meaningless in an experiment° For this reason we _nall

retain collisions in all our work°

I
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I
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Another problem arises when the cold plasma model, with or

without collisions, is used in a bounded problem. It has been shown

by Sancer [14], and is later shown in this work, that the normal

component of fluid velocity does not in general vanish at the walls.

There is no way around this problem within the bounds of the cold

plasma model and to eliminate this unphysical result we must consider

the more complicated wanu plasma equations.

To obtain the warm plasma equations three moments of the

Boltzmann equation are retained. To close the equations the heat

flow term, off-diagonal pressure terms and collision integral term

_,'_ .'_,_. _ _,_,_, T,^T_ .._'I',_ "I_-,'F_-, u_, _'_,,_ ,=A.___.____-___ _p _,._._..
,.t.j

momenttu_ and energy equations, The lineariT.ed form of these

equations, together with Maxwell's equations, provide a closed set

v_ equations ±_ur.study_-_g uo_lu_u wave propagation, in this work

we shall consider an electron gas model since we will be concerned

with high frequencies. The more general and more complicated

n-fluid model [15] has been used to study low frequency waveguide

(or magneto-hydrodynamic waveguide ) propagation [16 ].

The warm electron gas model has been used to study a variety of

boundary value problems. Propagation along an open isotropic plasma

cylinder has been studied, experimentally and theoretically, by

Kolettis [17]. A study of the inhomogeneous (i.e., including sources)

waveguide equations has been made by Sancer [14] . In this work

Sancer considers the mathematical aspects of the linearized equations

I



and discusses mathematically appropriate boundary conditions and

possible methods of solution [19] o It is found that the warm plasma

model has mathematically acceptable solutions for a number of

boundary conditions on the velocity. We shall use the condition

that the normal component of velocity vanish at the plasma boundary.

Other possible physically acceptable boundary conditions have been

discussed by Wait [21] . A formal method of solution similar to that

proposed by Sancer has been outlined by Chen and Cheng [22] . This

method is similar to the method used by Wang and Hopson [12] to

analyze the cold collisionless bounded problem. It will be followed

in Chapter 2 where we shall obtain solutions for the cold collisional

model.

Solutions for wave propagation in warm, collisional anisotropic

plasma have not appeared in the literature. If one attempts to

solve the problem by employing the formal methods suggested by

Sancer or Chen and Cheng it quickly becomes clear that a number of

extremely difficult coupled transcendental equations must be solved.

Besides presenting formidable numerical problems, it is felt that

the basic physics is quite obscured by this approach. We shall

avoid the method completely and derive a set of simpler equations

by considering the coupling of the various waves and the

simplifications which are evident from a coupled mode approach to

the problem. These simpler equations are derived in Chapter 6 and

solutions are obtained in Chapter 7 and 8.

I
I
I
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Although the main goal of this work has been to exhibit

solutions to the stationary, uniform plasma problem, it is of

interest to see how the equations change when drifts or non-

uniformities are present. In Chapter 3 and 4 the basic equation

for these cases are derived.



CHAPTERII

SOLUTIONSFORTHECOLD,BOUNDEDPLASMA

2.0 Introduction

Before considering the warm plasma we will consider the

solutions for wave propagation in a waveguide filled with cold

anisotropic plasma. It was pointed out in the introduction that

this model is not adequate for bounded problems since we cannot

impose any bo_dary condition on the normal component of the electron

velocity. However, the equations for this model are considerably

simpler than the more accurate warm plasma equations and it is of

interest to compare the results of the two models. Also, we shall

later (Chapter 6) derive a reduced approximate set of equations for

the warm plasma equations. It will be seen that these equations are

very similar to the cold plasma equations.

The method of solution employed here is very similar to that

used by Wang and Hopson [12] . However, we shall include collisions

in our model.

The starting equations for both models will be obtained as

follcWS o We will consider only the small signal, linearized 1_ome_t

equations and Maxwell equations with no applied sources. It is

assumed that the plasma is contained in a cylindrical waveguide and

that a steady axially directed magnetic field is applied. In this

6
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case the field equations can be broken into equations having only

transverse or axial components. From these equations it is possible

to show that all the transverse field quantities and the axial

velocity can be found from the axial components of the electric and

magnetic fields. These axial fields thus serve as a set of poten-

tials for the problem and are determined by solving a set of coupled

Helmholtz equations. This procedure will now be illustrated.

2.1 The Linearized Cold Plasma Equations

The equations used in this analysis are the standard llnearized

cold plasma equations with the assumed wave variation ej(_t-Sz).

M K. S. _'_*_ are ,used +_....._n_,t "_ 4-_ n__ _j(_t-Sz)

dropped for convenience.

To simplify the equations we will non_alize the .magnetic field

to have the dimensions of electric field.

ffactual field e _ _ (2.1)
WO

Also define the following quantities:

Noq2

_o = (e--_-) ; the electron plasma frequency

where No is the steady background electron number density,

the charge of an electron and m is the electron mass.

(2.2a)

q is

qB o

_B- ; the electron cyclotron frequency (2.2b)m

I



where B
O

is the magnitude of the applied magnetic field.

O_=- (c)
O

%
- -- (d) (2.2)

_ v (e)
V

where v is the effective collision frequency for momentum transfer.

k = _-- (2.2f)
O C

where c is the speed of light in vacuum.

All vector quantities are separated into axial and transverse

components, i.e.,

{$(x,y)+ ez(X,y) }ej(mt-Sz)

V = Vt- j8&z

= + hz , etc.

The resulting set of equations is

_-_ +

Vtx e = -Jkoh z (a)

azXVtez + 8azX +j e = Jkoh (b)

/_o_ (c)
Vtx _ = Jkoez+ Noq E z

O

I

I
I
I

I
I
I

I
I
I

I
I
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I

^ ^ /Lo+
azXVthz+ J SazX _ = -Jk°_ - N°q ¢o vt

(d)

Vt" e = JBez+ nq/c o (e)

Vt- _ = j8hz (f)

j_n + NoVt'v - JBNoV z = 0 (g)

(2.3)

j_(1-jg )_ = q/m{_ + _t x _o } (h)

j_(l-j Zv)Vz =(q/m) ez (1)

As mentioned, to SeD_t_ th_ _11_ _n *_ _ .... _o_ 4_ is

to assume _o= B ^oaz . A method of solving (2.3) will nownecessary

be discussed.

2.2 The Potential Equations

We now will show that a set of coupled equations can be found

and solved for the axial fields ez and hz . It is then shown

that all other quantities can be found from these quantities.

To obtain the equation for ez operate on (2.3b) with

and then with vt" and use (2.3c) and (2.3e) to eliminate

and Vt" e to obtain

2

{V_+k_(l- _o 2 = _q_--)-8 }ez -J
0

8.ZX

-.).

Vtx e

(2.4a)

where we have defined

I



lO

K =l-J£
V V

Operate on (2.3d) with _zx , then with Vt' and use (2.3a)

and (2.3f) to eliminate Vtx e and vt _ to obtain

{V2+ k20-B2}hz = -Noq _ az'Vt x
(2.4b)

h
Z

Equation (2.4) can be expressed entirely in terms of ez and

+

if n and Vtx v can be expressed in terms of these quantities.

It is easily seen that this can be done by writing a set of equations

including (2.3e), (2.3g), Vtx (2.3h) and Vt'(2.3h) as follows.

1 -q/E ° 0 0

0 J_/N ° 1 0

o 0 % J_K

-q/m 0 J_ -_B

I Vt'_

nl
Vt • v

z" Vtx v

/ JBe z

Bq
m_K ez

:koq

-J-_-- hz

\o
(2.5)

Equation (2.5) has non-trivial solutions only if the

determinant of the coefficients is zero. But

A = N_ [_2K2-2 21 (2.6)_ o Kv-_B
0

If collisions were absent, K = I , and A could be zero.

With collisions present A will generally never vanish and solutions

I
I

I
I
I
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ll

to (2.5) always exist.

We can now solve (2.5) for n

the result into (2.4) to obtain;

^ -@

and az.Vtx v and substitute

_2_2 koB_Bg2o

{ v2+ k2Kp-82(1 + -°-B_)}e = J h
o _ z _- z

(a)

_2_2 koB_B_2oKp
{V2+ k20[K o-_2]-62 }hz= -J ez (b)

(2.7)

We have defined several auantities which wl]] _nnesr 9r_nl]@nt]v

t_-oughout this work.

42

KD --I-_ (a)
V

o - K- (b)

(2.8)

Solutions to (2.7) are considered shortly. First, the equations

for the other field quantities will be presented.

2.3 Equations for the Transverse Fields

The equations for the transverse fields are obtained by

straightforward, but rather tedious manipulation of (2.3). Only the

results are given.

Define the following quantities

I
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m

I

I

k2 e k2 K -B2 (a)
p o p

k2 - k2 - 82 (b)
C O

(2.9)

The transverse electric, magnetic and velocity fields are given

I

I
I

in terms of the potentials by I

g-_'_'_ _ _c 2o2o o20__BKc_e = -j B( -_ )Vtez+£B_ k BazXVtez+_B_ k Vth z I

+ Jk - :_-"_(k2-_k2)a xV_h
O p _C Z L Z

(a) I

{kp4- £i_k4c}_=-£B£2o _0 vtez-jkO(k2pKp_2c) azXVtez

2 22
-jS(kp-_c)V_h +Bk2_2_a xV_h15 Z 0 0 /J Z D Z

I

(b)
(2.10) I

I
jKq + %q ^

+ i { e azX $} (c)

I

The axial velocity is given simply by I

-Jqe z

vz : _ (2,±i)

It has been pointed out several times that it is not possible

uu sa_isi_ a boundary condition on v using the cold plasma model.

This point is clearly illustrated by considering (2.10c). If we

consider the plasma to be contained in a waveguide having perfectly
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I
conducting walls and apply the boundary conditions _tangential = 0

I at the walls, then the normal component of _ will generally not

i
I

i
I

be zero. From (2.10c) it is seen that the normal component of

velocity will also not be zero and is determined by e .

Another consequence of using the cold plasma model is the

omission of a class of acoustic modes _ which may be of interest. Of

course, every assumption that is made in assuming in_nobile ions and

neutrals, no heat transfer, etc., introduces approximations into the

I
I

I

equations. The important point is that neglecting these terms may

not appreciably effect the dispersion characteristics of the modes.

Solutions to the cold plasma equations are SO1_ht now so that we

may later compare the dispersion curves with those obtained from the

warm plasma equations.

I

I

2.4 Solutions for a Circular Cylindrical Guide

,. Detailed solutions to (2.7) are now sought where the waveguide

geometry is shown in Fig. 8.i and the analysis is restricted to

I
I

I

determining B for the lowest order modes. The analysis proceeds

as follows. First, a transformation will be found which diagonalizes

the coupled differential equations, (2.7). Then the boundary
dh

conditions ezl c = _-Alc = 0 are applied and a transcendental

equation from which the eigenvalues are derived is found. Solving

I

i

the transcendental equation numerically gives the dispersion

relation and eigenvalues.
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I
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Define the following coefficients appearing in 2.7 by

£o2£B 2

bll 2 : k 2K - S2(I +
o p _ K22

2K

2 2 o..2__2 )_ 82
b22 = k (1- Y'H

) (a)

(b)

j _-o2-BkoB
b12 : (c)

5_

(2.12)

b21 : - b12 % (d)

The coupled Helmholtz equations are now written

2
ez bll -b12

Vt2( ) + [ 2

hz -b21 b22

e
z

] ( ) = [0] (2.13)
h

z

In matrix notation (2.13) can be written

e
z

[Vt2 + B] ( ) : 0 (2.14)
h
Z

Now we construct a matrix M, such that M-IBM is a diagonal ma-

trix, where M-I is the inverse of M. Techniques for diagonalizing

non-Hermitian matrices are discussed in Friedman, Ref. 23, and will

not be elaborated on here.
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To construct M we must first solve for the eigenvalues of B.

The eigenvalues, _2, must satisfy the equation

bll 2 A2- -bl2

2 _2
-b21 b22 -

= 0 (2.1S)

Expanding (2•15) and solving for _2 gives

2 1/2

2 (bl12+b222) _ {(bl12-b222) + qbl2b21}

_i,2 : 2 (2.16)

Note that the eigenvalues cannot h_ _.=t=_=.'-=_=vp_'o'tTy from (2.16)

since the bij contain 8. To find the eigenvalues and associated val-

ues of 8 we must i_pose the boundary conditions• We can assume that

Lne values of _ can be found and for_lly g_uu==d _u fiend 8. As

shown in Friedman, the colunns of M are the eigenvectors associated

with A 2
1

There are alternate ways to solve for the eigenvectors, but the

one that must be used in practice should avoid any numerical difficul-

ties caused by division by zero if, for instance, b12 or b21 should

become zero. An appropriate form for M is

I
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(2o17a)

b21 b12

= = bll 2_ 2where m21 2_k 2 ; m12 k2b22 i

(2o17b)

The original fields are related to a set of new

field quantities, u i, by

e z u1

(hz) = M(u2)
{2o18a)

where u i satisfy the diagonalized equation

{vt2+_i2}u i = 0 (2o18b)

Now specialize the problem to cylindrical geometry

and consider solutions° This geometry is later used

when the warm plasma problem is analyzed and it will be

of interest to compare the results obtained from t,ho two

modelso The analysis is restricted to consideration of

modes having no azimuthal variationso

In this case (2o18b) becomes

d dui 2

d--_r d--_ + rA i u i = 0 (2o19)
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The only physically allowable solution of (2.19) is

a zeroth order Bessel function

u i = AiJo(Air) (2.20)

Note that _i is not yet specified since no boundary

conditions have yet been applied. The applicable

boundary conditions on u i must be derived from the

conditions e z = _hz/_r = 0 at r = a, where a is the

waveguide radius. Using (2.18a) to relate u i to e z and

h z and applying the boundary conditions gives;

Jo(),la)

-m21XlJl(Ala)

ml2°2ai
_A2Jl(12a) j A2

[0] (2o21)

Non-trivial solutions to (2o21) exist only if the

determinant of the coefficients vanishes° This condition

yields the equation

X2Jo(_la)Jl(X2a)-_iml2m21Jo(_2a)Jl(Ala) = 0 (2.22)

Note that Ai is a function of 8 since 8 is con-

tained in (2o16). Thus to obtain the dispersion relations

and the A's it is necessary to solve (2o16) simultaneously

with (2.21)o Obtaining solutions to these equations is

I
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not a simple task. The numerical methods used will be discussed

briefly below and then the results of the computations are presented.

When collisions ar_ included in the cold plasma model, as they

have been here, the parameters in (2.16) and (2.22) will in general

be complex and the equations can not be solved graphically. To solve

these equations Newton' s iterative procedure, with the equations writ-

ten as functions of the complex variable 8, has been employed [24] .

To use this method it is usually necessary to have a good approximate

starting value to begin the iteration. At very high frequency the

coupling becomes very small and the iteration can be started.

A computer program was written to find the dispersion relation

and eigenvalues for different values of the plasma parameters, _o and

roB" The solutions were divided into two classes called hybrid-E and

hybrid-H modes. The term hybrid signifies that the modes are not pure

E or H modes and the E or H nomenclature indicates that the modes re-

duce to these pure modes in the high frequency limit. Dispersic_ re-

lations for some choices of parameters are shown in Figures 2 _-2.5.

: /_.,2 + k2 where _C is derived inThe frequency (normalized by _C -o

the next section) and the parameters are chosen to
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coincide with those used in Chapter 8 to display the warm-plasma

dispersion relation so that a comparison of the results from the two

models may be made.

2.5 Cutoffs, Resonances and Limitin_ Values for 8

With the dispersion curves available it is now of interest to

try to explain some of their characteristics in some limiting cases.

Since strict cut-off and resonance points do not occur when 8 is

complex (i.e., when collisions are present) we shall assume that v

is zero in the following derivations.

A. The high frequency limit

When _ >> _o or _B' £o and £B both approach zero

and KB, Kp and KH approach unity. Thus, at high fre-

quencies the dispersion relation approaches that of

the empty waveguide.

So

_B ÷®

In this limit _ ÷ - £B2 and the right hand

coupling terms in (2.7) approach zero. The equa-

tion for hz, (2.7b), reduces to

{Vt2 + ko2 _ 62}hz : 0 (2.23)

This is just the equation satisfied by the H modes

in an empty waveguideo The behavior of 8 shown in Fig.

2.5 has exactly this behavior.
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Equation (2.7a) is changed from that of the empty wave-

guide E modes and exhibits the behavior shown in Fig. 2.i.

This is shown as follows.

In the limit of high cyclotron frequency the quantity

multiplying 82 in (2.7a) becomes

(KH +_o2£B 2) ÷ (-£B2 + £o2£B 2) _ 2
-I_B2 1 - 1_°

(2.24)

Equation (2.7a) thus becomes

{Vt2 + %(ko2 - fl2)}ez : 0 (2.25)

m_4 is &n eigenvalue =_=_._,, o_,_ 8z is given J_n_^

usual way by

B : _ 2 _ 12/K (2.26)
o p

where 12 is the eigenvalue of (2.25). At the plasma fre-

quency 8 has a pole since K : 0. Thus 82 ÷ - ® for
P

+ B2: _ and ÷ ® for _ : _ .
o o

C. Cut-off and Resonance Feequencies

Additional information about the dispersion curves at

particular points can be obtained by writing (2.15) explicit-

ly in terms of 8. To facilitate this multiply (2.15) by

KH2 to eliminate division by zero where _ equals zero and

define

I
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Cll = (ko2Kp-A2)KH C12 = KHbI2/8

C21 -- KHb21/B C22 = ko2[KpKH-_o2LB 2] -12K H

Expanding (2.15) in terms of the above

quantities gives

KH(KH+go2ZB2) 84 - 82[KHCII+(KH+go2gB2)C22 - C12C21]

+ CIIC22 = 0 (2o27)

Cut-off frequencies occur when 8 = 0o But

this is possible only if CiiC22 = 0o Note that

CII and C22 contain _, but when 8 is zero equations

(2o27) decouple and A can easily be found. Setting

each quantity equal to zero gives the possible

cut-off frequencies°

solving for m gives

mCE = /_o 2+_2C2

Setting CII to zero and

(2.28)

This is the cut-off frequency that was used to

normalize the frequency in the preceeding curves°

The other roots of (2°27) with 8 = 0 are obtained

from

C22 = 0 (2o29)
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Setting C22 to zero gives an equation for two

values of the cutoff frequencyo Since this

expression is quite complicated and cannot be ex-

pressed simply it will only be said that the cutoff

frequencies obtained from setting C22 to zero are

functions of the cyclotron frequency as well as

the plasma frequency and that the cutoff frequencies

increase with increasing wBO This increase of the

cutoff frequency is noticed in Figures 204 and 205o

Finally, it is noted that, when B = 0, CIIC22

is zero if KH is zero° However, if KH _ _ _

zero before B is set to zero it is found that all

terms in equation (2o27) are identically zero and

one is left with the meaningless equation 0 = 0o

The resonant conditions are found from equation

(2o27) by dividing the equation by B4, defining a new

quantity a = 1/B and setting a to zeroo Thus resonances

can occur when

(KH+£o2_B2) = (l-_B2)(l-Zo 2) = 0 (2o30)

Possible resonances then occur when the frequency

equals either the plasma or cyclotron frequencyo R_so-

nant behavior is seen from the dispersion curves to

occur for both modes at the cyclotron frequency, but at

the plasma frequency only for the hybrid E mode°

I
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One other case Is of interest. It was stated pre-

viously that If KH - 0 then (2°27) becomes an identity°

To investigate thls case further conslder equation (2o5)

and (2.6)0 Note that the condition KH = 0 Is Just the

condition that the determinant of the coefficients, as

- l, vanish To prevent theexpressed by (2.6) wlth Kv

solution from blowing up It Is necessary that the right-

hand-slde of (2.5) vanish. This can occur if h Is zero
z

and If either B or e z Is zero. If B vanishes we have a

cutoff condition and (2@4a) has a non-zero solution for

e z. Thls cutoff condition Is evident in the dispersion

curves shown in Figures 2ol-2.3. If B is not zero then

both axial fields must vanish. However, no cut-off

condition Is evident.

The cut-off and resonant points for the colllslonless

cold plasma have now to be found° For the hybrid-E

modes cutoffs occur when m = /Wo2+_2C2 or where KH = 0o

Resonances occur when m = m° or wB. For the hybrid-H

modes cutoffs occur when C22 , as given by (2.29), is

zero and resonances occur when m = _B"

With the cut-off and resonant points of a particular

mode known it is a relatively simple task to sketch the

form of the dispersion curves° For instance a sketch of

f

the dispersion curve shown in Fig° 2.2 is shown below°
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It is helpful to have this knowledge since it enables

us to check the reasonableness of results obtained by

the computer Note that Fig. 2_6 is a plot of B2 vso mo

%

I

I

I

iPOLES

I I
(..0o-_i _ -"'i

i I

ii

(-,OH

Fig° 2o 6 Sketch of the Form of the Dispersion Curve

with Normalized Values mB = 0o6 and mo = 0o4o
The frequeney is normalized with respect to

mCE"

Finally, it should be pointed out that the preceeding

analysis of the cold plasma model will be of considerable

value later when the more complicated warm-plasma model

is testedo It is shown in Chapter 6 that the warm plasma

equation can be expressed in a form which is very close

to the equations used here, if the analysis is restricted

to consideration of the hybrid E and H modes° The

behavior of the dispersion curves should thus be expected

to exhibit a behavior which is similar to curves obtained

for the cold plasma model°



CHAPTERIII

THEPOTENTIALEQUATIONSFORA WARM,ANISOTROPICDRIFTINGPLASMA

3.0 Introduction

In the last chapter it was seen that solutions to the cold

plasma problem could be obtained entirely in terms of the axial field

quantities. Similarly, for the warm, uniform, stationary plasma

Sancer has shown [ 14 ] that solutions can be obtained by considering

the axial electric and magnetic field and the pressure to be the

potentials for the problem. Early in the study of this problem it

occurred that such a treatment might also be possible for more

general drifting and non-uniformplasmas. This is indeed the case

and the potential equations for these two cases will be presented

in this and the next chapter. The equations are presented for

reference and no attempt will be made to solve the involved equations

which will be derived.

In this chapter we consider only the linearized uniform

drifting plasma. The non-linear d.c. equations are not considered.

3.1 The Basic Equations

The equations used to describe the plasma are Maxwell's equa-

tions, the equations for conservation of mass and momentum as

derived from the Boltzmann equation assuming a diagonal pressure

3O
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term and an effective collision frequency for transfer of mcment_n

and the adiabatic eqt_tlon of state to truncate the mam_nts of the

Boltm_mnn equati_. Using M.K.S. units these become

v x "_= - _o _ (a)

v x_= co -_+ _" (b)

, • _/= o (c)

(3.1)

v • _ = p/% (d)

_t _,, / V "t _ /._

o
(f)

PN-_ = const. (g)

It is assigned that the frequaucy is sufficiently high that the

motion of heavy particles can be neglected. Ions are assumed to

provide a stationary neutralizing background for the electrons.

, m , N and P are the electron fluid velocity, mass, gross

num_ber density end pressure respectively. The other symbols are the

standard symbols used in Maxwell's equations. _o is a static

externally applied magnetic field and in this work is assumed to be

oriented along the axis of the cylindrical waveguide.

!
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3.2 The Normalized m Linearized Equations

The equations will now be linearized by assuming that the fluid

field is compOsed of large static terms plus small time and space

varying terms.

= %+ _'(x,y)e j(_t-Sz)

N = No+ n(x,y)e j(_t-Sz)

(a)

(b)

(3,2)

p = Po+ p(x,y)e j(_t-Sz) (c)

and _

ej(_t-Bz) . The current

are assumed to be small signal te_ns varying as

is assumed to be due only to motion of

the plasma electrons.

J=_ (3°3)

The linearized a.c. equations are thus

v x _ : -J_ (a)
%2

6 x _ : J_o_ + q(No_+ n_o)

+ q/_0_/: :V °£=n

(b)

(c)

(d)

(3.4)
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J_n + V " {n_o+ No_'} = 0 (e)

JmNo_'+ (N2o "v)_' = mqNo$ + mq {No_'X _o+ n_oX _o }

_ Vp._ N _'-nv_ (f)
m o o

YPo

p = (T)n = (yKT)n (g)
O

where K is Boltzmann's constant and T is the Kelvin temperature.

It is now convenient to normalize the variables to have the

dimensions of electric field. _ie nO_nT_lization used here has been

p_sented in Sancer's work. r_,7LZ_J

_ ¢_/___o_ (a)
_0

_, : _ ___o_ (b)
uNoq _o

uNoq
p _ ¢ (c)

(3.5)

Noq
n = --¢ (d)

m_ou

u is the adiabatic electron gas sound speed.

u=( m ) (3.6)

Since a steady drift is assumed to be present define the

!
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normalized term

Wo - g--_ (a)
mu2h o

O

where h = _- (b)
0 U

(3.7)

Using the above defined quantities in (3.4) gives the

linearized, normalized equations

vx _ : -jko_ (a)

V x _ = jkJ + ho'_ + ho_o¢ (b)

v • _ : o (c)

(3.8)

v • _ = ho_2o¢ (d)

J_ ko¢ + V . v + V • (Woe) = 0 (e)

JhoV + ho(_o'V)_ = _2k _ + ho_BVXav+ + ^_2 k o o + ^ ho_BCWoXaz
O O

_2k
O O

h
O

V¢ -ho_ - ho_¢_ ° (f)

7he following quantities have been defined and used in (3.8)

% %
_o m ; _B _-- (3.9)
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All other quantities have been defined previously.

Now we will decompose the vector equations in (3.8) into

equations for the transverse and axial components as was done in

Chapter 2.

For convenience we define the differential operator

M- o
_,2k

0 0

(3.1o)

Equations (3.8) become

Vtx e : -Jkon z (a)

^

az x Vtez+ JBazX _ = 3koh"÷ (b)

= + h _z¢Vtx _ Jkoez + hoVz o (c)

azx Vthz + JBazX _ = -Jko_ - ho_ t- ho_t¢ (d)

(3.11)

2oVt" e : jSez+ ho£ ¢ (e)

Vt" _ = jBh z (f)

J_2oko¢ + Vt" _t- JBVz+ Vt" (_t ¢)- JBWz¢ = 0 (g)

Note that a list of all definitions used in this work appears

before Chapter i.

I

I
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2oko_ azX ÷= ho%CWtx azJhovt+ hoMV t £ - ho_ vt+

_2k
o o

h
O

Vt¢ - ho_ vt- ho_¢W t

_2oko
JhoVz + hoMV z = _2okoez+ JB _¢- ho_ vZ

0

(h)

- ho_¢W z (i)

These equations are now used to derive a set of coupled

equations for ez , hz and ¢ .

3.3 Derivation of the Potential Equations

A study of the terms in (3.11) reveals that one term, the

differential operator M in (3.11i), changes the characteristic of

the potential equations from coupled Helmholtz equations to more

complicated differential equations. It is still possible to

manipulate the equations and find a set of coupled equations for e
z

hz and ¢ by introducing some formalism used in solving operator

[23]
equations. (A discussion of the procedure is found in Friedman,

particularly Chapter 3).

Define the differential operator L by

L e Jho(l__JM__J_) (3.12)

and assume that an inverse operator, L-I , exists such that L-if = i.
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Using the definition we can now solve (3.11i) for v and then
z

proceed to use this solution to derive the potential equations.

At the end of the derivation any equation containing L-I will be

operated on with L to cast the equation into differential form.

Thus, it is not necessary that we actually flnd the inverse operator.

Its introduction makes the following derivations much easier than

would otherwise be possible.

The solution of (3.11i) for vz can thus be written,

_2k

= +jB oovz L-l{_2okoez _ ¢ -ho_CW z} (3.13)
O

To derive the equations for the potential equations (3.11) are

combined in such a way that all quantities

are eliminated from a particular equation.

equation for e .
Z

except ez , hz and ¢

First, consider the

Operate on (3.11b) with azx and then with Vt. to obtain

V2ez+ J Bvt" _ = Jkoaz'Vtx

Eliminating Vt" e and Vtx _ gives

(3.14)

{V2+ k2-o B2}ez = -JBho_2o¢ + JhokoVz + JkohoWz¢

Substituting from (3.13) for v z and operat_.g with

the final equation

(3.15)

L gives

I
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L{V2+ k2-o 82}ez_ k2ho_2oez = L{-JSho_2o¢ + JkohoWz¢}

2 2 _2k h g CW
-_oko 8¢ - J o o o v z (3.16)

Similarly the equation for hz is derived by operating on

^ X(3.11d) with az and vt" and then eliminating Vt._ and

-9.

Vtx e to obtain

{V_+ k2-o 82}hz = -hoaz'Vtx _t+ ho(azX _t)'Vt ¢ (3.17)

Now operate on (3.11h) with

vt. v and (3.11a) to eliminate

Vtx , use (3.11g) to eliminate

vtx e to obtain,

L(Vtx _t ) : Jho£B£2oko_ - j_2k2^h--ou _ JSho£BWz¢

+ ho_Wtx Vt¢ - JSho_BVz (3.18)

^ -_

Using (3.18) to eliminate az'Vtx v

substituting v from (3.13) gives
Z

from (3.17) and

{V2+ k2-o 82}hz- J£2k2hoooL-_z = -hoL-l{-J 8ho£Bi-l[£2okoez

+J B

£2 k
0 0

h
0

_¢ - ho£ CWz] + Jho_B_ko¢ - Jmo_BWz ¢

+ ho£ _tx Vt¢} + ho(az x _t)'Vt ¢

This equation can be converted to a purely differential

(3o19)
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equation by operating with L2 .

The equation for ¢ is the most tedious to derive and results

from combining (3.11b) and azx (3.!lh) and eliminating terms.

The result is,

2

L2-'Zoko-- 2 2 2. 2. ,,
i-_o- [Vt-8 -£oho)¢ - JL(ho¢)]-J 8ho£vCWz-ho_B(Wtxaz)'Vt¢

-h_£ovWL'oVt¢ + /[J 8Wz¢-Wt.vt¢]}

+ L{-J okoho_B¢ + J + -

.2
o o o o _k o o o o

+ JBho_okoez-B"(-_o)h o B¢ - JBhogB_vCWz = O (3.20)

To continue further it would now be necessary to find the

transverse fields in terms of the potentials. _is, in fact, can be

done and the resulting equations are a set of differential equations

for the transverse field quantities having a linear combination of

Vt¢ , Vte z , Vth z and ¢ as sources. The main interest here was

to demonstrate that a coupled set of potential equations could be

derived. We shall work only with the simpler drift-free equations.

The potential equations and transverse field equations for this

case are now presented.

!
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3.4 The Equations for a Stationary, Uniform= Warm Plasma

Now assume that _ = 0 . In this case the operator
o

becomes syn_ly

i = Jho(1-j_ v) (3.21)

The Potential equations simplify greatly in this case and

reduce to

_2

{V2+ k20(l-_)-82}ez : -JB£2oho[l - (U/C)2]¢ (a)

£2 £2°£Bko 8

v K2
e
z

_2__h k 62/h2
0 _ 0 0--- O_

LI-Tj ¢ (b)
_)

'_o_ %_o_o
{Vt2+h2°KH- KB82}¢ =J7 ez K

h
Z

(c)

(3.22)

Equations (3.22) will be used extensively in later work.

The equations for the transverse field (with W = O) can be
O

derived by straightforward, but rather tedious,manipulation of

(3.11) . Sancer has indicated the necessary procedure in some

detail and the derivation will be omitted here. The results are

£4,4 _2k 8k2 j._2_ k 8k2

{k4
<c o _o c _ x Vte zo o P Vtez- h K z
K_'}_= Kvho o v
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Vthz+

_2k2k2

o o p _zx Vthz +Kh
v O

j_2k k2k 2
oocp
K h2 vt¢

O

K2h 2
v O

az x Vt¢ (3.23a)

_2, 4

B_c}_=
K2

_o_o_
K2
v

Vte z- Jko{kp2Kp

_2k2

-J 8{k_2- _}V÷h +

v

_2k2
B c

-_}az x Vte z

_B_2k Bk2
O O C

+J K2 h Vt¢
O

_2_ - 2
o _o 8

a x V. h
K2 _ _ _
V

_2k Bk2

o o p _zx
K h° Vt¢

The transverse electric field is most simply writen

(3.23b)

÷ JVtez k° a x _ (3.24)
e- B B z

The axial velocity is simply;

I _2ok° _2okoB

I Vz:-__ e z+ h_ KU @

I
I
I

(3.25)

Equations (3.22) - (3.25) completely determine all the fields.

It is noted that we cannot yet proceed to solve the problem since
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boundary conditions on (3.22) have not been specified. These will

be considered in Chapter 5 and solutions are considered in

Chapters 6 - 8 .
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C_R ,l-q

POTENTIAL EQUATIONS FOR A NON-UNIFORM STATIONARY WARM PLASMA

4.0 Introduction

In this chapter we shall consider one other case where the

field quantities can be expressed in terms of a set of coupled

potentials. Again the equations are presented for reference and to

demonstrate the applicability of the technique. No solutions are

attempted in this work.

_ is known _1_nao_iaborato_y piasters are generally not uniform

and in a typical discharge the number density will vary across the

discharge tube. Also, it ___ possib]_ en _t __A_A_--111_ @_I__LA _arm._ l"_l_m._&

densities in other plasma, like devices such as doped semiconductors.

We shall here restrict the analysis to cases where the number density

varies in the transverse plane only.

4.I The Normalized_ Linearized Equations

Since now the background number density of ions and electrons

is allowed to be a function of the transverse coordinates it is

necessary to retain terms arising from differentiation of the number

density. The basic equations can be simplified somewhat by

defining a new set of normalized variables as follows.

43
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(a)

N_=_--°+- w
o uq _o

(b)

n = --q- ¢ (c)
m_u

(4.1)

p=Uq¢ (d)
_o

_2 (q2/mEo) _2_ _ o (e)
- 2 N

O

These variables are similar to those obtained in (3.5) but do

not now contain the background number density. In particular note

that we have defined one variable, w , to be proportional to N v o
o

By doing this we eliminate a number of terms which arise from

operating on N _ with v . N is assumed to be a known function
O O

of the transverse coordinates.

Using the noz_aalization presented above and separating the field

equations into transverse and axial components gives

+ ko (a_v+xe = -j _z

azx Vtez+ JBazX _ = Jko_ (b)

_tx _ ° ÷ _ (c)= 3koez + ho z

(4.2)
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#5

^ ^ ,-).

azX Vthz + J $azX _ = -Jko_ - hoW t (d)

+ _2¢ (e)v t" e = J6ez+ h °

Vt" _ = J Bhz (f)

Jko_2 ¢ ÷+V t" wt- jSw z = 0 (g)

-* h ^ ÷
JhoK_Wt + o_az x Wt=

0

_2,

_2k _ Kih K w = e + i6-:--z
- O _ Z O O Z _

O

(h)

Note that the only spatially varying parameter in (4.2) is _2
O

which appears only in (4.2h) and (4.2i) .

4.2 Equations for the Potentials

The equations for the potentials will now be written. The

derivation of these is exactly like the derivations in Chapter 3.

However in this case it must be remembered that _2 is a function
o

of position and thus gives a contribution when operated on by a

differential operator. The resulting equations are

_2 k2 ,h2
• o 2 o/ o

{V2+ k20(l- (l_j_))-6 }ez'_ho_2B[ I- _)J¢
(a)

I
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22

{v2+ k2o(l- (l_j_))-82}hz =-J

220£Bko 8 _,2£Bk o

(l-J_)2 ho(1-j£ v)

82 Jko

[hO- (l_J£) ]¢ + (l_j£ v
)[a z" (vt£2o)X 5] (b)

{Vt2+ h2o[l-J £

2 Noh o 8

(l-j£)2 (l-j£)2
e z

_ _oNJo %ho ,^.
(l_j£v) hz+ hoVtN o" _-'J(l_j£ )taz VtNoX 5]

(c)

(4.3)

Equation (4.3a) is identical to (3.22a) if the same nonmalizaticn

for ¢ is used and 22 in (3.22a) is regarded as a function of
o

position, _

The other equations are changed by the inclusion of terms

proportional to the gradient of the background number density.

Note that the last two equations contain terms in e , the transverse

electric field_mnd thus are not yet closed equations. To complete

the derivation for the coupled equations it is necessary to show

that e can be expressed completely in terms of the potential.

4o 3 The Solution for the Transverse Electric Field

It is clear that the transverse fields can be expressed in terms

of the potentials° This can be seen by writing the equations
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I11

J_Z x _- JkJ - -azXVtez (a)

Jko _ + j_z x _ + ho_ t = -azxVth z (b)

÷ + ho_Ba x ÷ = _£2 ko-£2oko_ + JhoK_W t j wt _- Vt¢ (c)
O

(4.4)

Equation (4.4) could b@ written as a set of 6 equations for the

components of the transverse fields and solutions can be obtained

by detenTLinants. Only the expression for e is considered here.

The solution for e is

£2k2 £2k2o_B8 £2oko3_B

k_ _-- -J6[kp2- -B_c]v_e + a xVtez + _ Vth z
K_ _ z K2 -- K_
V V V

£2k2 £2k2k2

+ Jko[kp2 B_c]_ xVLh O]_K_ z c z hoK _ Vt¢
V

22 2
ko_Bk c

J h K __azXVt_
O

(4.5)

Here we have defined the quantities

k2 = k2 (a)
p o Kp-82

k2 = k2 _2 (b)
c o-_

2 k4

k4__ k4_ _B c
P K2

V

(c)

(4.6)

I
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It is obvious that substitution of (4.5) into (4.3) results in

a messy, but deterministic set of equations for the potentials. We

will thus not do this. Some general conclusions may be made by

examining (4.5).

First note that in any problem VtN ° is a known (from

measurements or solution of the d.c. equation) fixed vector. The

inclusion of terms from e change the equations in several ways.

First, the potential equations will no longer be Helmhol_ equations

since terms in Vt will be included. Also the terms in azXVthz

and azXVt$ effectively eliminates the possibility of solutions

which vary in only one transverse direction. Note that, when the

external magnetic field is absent the coupling between transverse

A

components arising from azxVth z , etc. vanishes.

Of course the extent to which the variation in number density

changes the uniform results depends on the magnitude of the

variations. In some cases it may be possible to use the uniform

solutions to derive corrections to the non-uniform problem by

employing a perturbation technique.

In the rest of this work we shall consider the plasma to be

stationary and uniform° Although the equations for this case are

relatlve±y simple co_©ared to the equations just derived, they are

still quite involved and should provide some insight into the more

complicated problems.
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CHAPTER V

BOUNDARY CONDITIONS, CUTOFFS AND RESONANCES

5.0 Introduction

In order to obtain solutions for the potential equations it is

necessary to derive a set of boundary conditions for ez, hz and ¢.

These boundary conditions are obtained from the expressions on the

transverse fields and are derived in Section 5 .i.

It was stated in Chapter 1 that solutions to the warm plasma

equations would be obtained by approximate methods. This is neces-

sary. (or at least desirable) since an exact solution of the coupled

equations is very difficult and also because it is possible to make

some very excellent approximations in obtaining simpler approximate

solutions. Ho_ver, some info_,_mation ce.n easily be obtained =_bout

the approximate positions of resonances and cutoffs by considering

the coupled collisionless equations in a formal manner. The loca-

tion of these points will be found in Section 5.2.

5.1 Boundar_ Conditions for the Warm Plasma Model

The appropriate boundary conditions for use with the warm plasma

model has recently been the subject of some debate. Sancer has

studied mathematically acceptable boundary conditions by considering

those conditions for which the warm plasma equations have unique

49
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solutions [14] . From this analysis it is found that the conditions

Etangential = Vnormal = 0 at a perfectly conducting rigid wall are

appropriate boundary conditions fore the problem. They are also

reasonable physical boundary conditions and will be en_loyed here.

Wait [21] has discussed an alternate boundary condition to de-

scribe the so called "sheath collapse" condition which can be ap-

plied if it is assumed that all electrons striking the conducting

surface are absorbed.

The effect of the dielectric insulating container on the be-

havior of propagation in an isotropic cold plasma has been examined

by Trivelpiece [3] and by Clarricoats, etal [8] .

= 0 To facilitateIn this _ork we use the conditions _ = Vn .

the solutions for the potentials it is desirable to cast these equa-

tions into equations on ez, h z and ¢.

5.2 Boundary Conditions for the Potentials

The transverse electric field is given by (3.24).

. ]Vtez ko ÷
e = & × h (5.1)

8 8 z
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Since we require that the tangential components of the electric

field vanish at the conducting surface the axial electric field must

vanish.

I = 0 (5.2)ez c

The tan&_ntial component of (5.1) must also vanish at the boun-

dary. But this implies that the normal component of h must be zero

since (5.2) forces the tangential component of vte z to be zero. The

remaining boundary conditions are thus

h = V = 0 at the walls (5.3)
n n

(5.2) is a boundary condition for one of the potentials. We now seek

conditions which can be applied to hz and ¢. To find these boundary

conditions let us now require that (3.23) satisfy (5.3) at the boun-

dary. The result is

_e _h 8h

8kp2 z z k --= 0 = - J£Bkokc 2 2k 2 zv • £1c _n _n o p _T

+ ]kc2kp2 _-_ + £Bkc4 _¢ (5.Ua)
h _n K h _T
o 9 o

I
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l
£ 2£.k 2 ah j£n_ 2k k 2 ^_ £ 2k k 2 _.
o _______o_ + D o o_________S_c__!_÷ o o p a_Z

Kv2 aT K 2 ho an l<h O dT I

(5.4b)

In the above equations we have used the fact that ezl c = 0. I

The components of Vie z, etc. have been written as normal and tangen- I

tial derivatives where 6, _ and az form an orthogonal coordinate sys-

tem illustrated in Fig. 5.2. I

I

I

I

Fig. 5.1 Coordinate System for the Boundary Conditions
!

The rather elaborate boundary conditions, (5.4), carmnt b_ _im- !
piirled if all components of the fields are assumed to be preston=.

However, if we assume that the field components have no _a_igential
!

!

!
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variations a greatly simplified set of equations can be derived.

@
Assume that the terms involving _-are zero, multiply (5.4a) by

-,._2,.B_o 2
K 2 , (5.4b) by kp and add. The result is

_o 2_B2ko2kc 2
: 0 (5.5)

kp Kv2 Bn

Since the multiplying term in (5.5) is generally not zero the

normal derivative of hz must vanish at the boundary.

_ I

_"Z !Bn c

Substituting (5.6) into either (5.4a or b) gives the boundary

condition on ¢

_i _-jhj @ez
c k T -_-n-c

C

(5.7)

5.3 Determination of the Cut-off and Resonance Frequencies

Now that the boundary conditions for the potentials have been

determined we can proceed to consider solutions for the problem. In

all of oumworkwe shall consider only modes where the restriction

that the modes have no tangential variation can hold. This excludes
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the rectangular waveguide and in practice restricts the analysis to

the circular cylindrical and parallel plate guides. Since the circu-

]am guide is of greater practical interest we consider only this

case.

Now we shall proceed in a formal manner to diagonalize the

coupled Helmholtz equations. This method generally is too difficult

to yield solutions for the equations, but it does yield the resonant

and cutoff frequencies. Two difficulties arise when attempting to

solve the equations. First, the eigenvalue equation is a cubic

equation and the roots are very difficult to find (Chen and Cheng,

ref. 22, have stated that the solution for the roots is "streight-

forward" for the collisionless case). Second, even if we can find

the eigenvalues in tezm%s of 8 is still necessary to solve the trans-

cendental boundary equation for 8.

The equations for the potentials are given by (3.22) and can

be wmitten

Vt2

--4

all

+ -a21

-a31

0 -a13

all -a23

-a32 a33

= C0] (5.8)



Here we have defined

all = ko2K - 82
P

a13 : _ j£o2Bho
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Ca)

(b)

a21 :

-j£o2£BkoB
K 2

-%_£@oko
a23 = K

5 £_2h 8
- D o

a31 -
K2

-£?Jo
a32 = K

(c)

(d)

(e)

(f)

(5.9)

"33:ho2_- KBB2 (g)

Define the mtrix A by

A = [aij ] (5.10)

Equation (5.8) can now be written

{Vt2 + A} hz = 0

¢

(5.11)
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To diagonalize (5.11) we must solve the characteristic equation

IA - _2Zl = 0 (5.12)

Expanding (5.12) gins a cubic equation for 12.

A6 _ _4(2ai I + a33) + _2(a112 + 2alla33 _ a23a32 _ a13a31 )

(all 2 : 0- a33 - alla23a32 - allal3a31 + a13a21a32)
(5.13)

2

Assuming that the r_ts of (5.13), li ' haw bee_ fo_md_ can

proceed to find a tr_nsfon_ation nmtrix M which diagonalizes A (the

procedure used here is exactly like the one used in Chapter 2). M

can be _itten

Im 1
_3

M = _i 1 (5.14)

31 m32

Note that the matrix A is not a Hermitian matrix. Generally a

non-Her_itian matrix can be expmessed in a Jordan canonical form.

This form is diagonal if the eigenvalues, _, are non-degenerate. A

Thorough discussion of diagonalizing non-Hermitian matrices is given

by Friedman, ref. 23.
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-a13(all-_22)

I where m12 " (a)
• a21a13-a23(all-X22 )

I "a13 (b)

m13 _ all_X32

I . {(alI_XI2)(a33_XI2)_ _-_}

I m21 a32a13 a32
(c)

i
I

I

a13a31 (a_-_32)

m23- {a32(ail__£2 )- a32

-(all-Xl 2 )
- (e)

m31 a13

(d) (5o15)

I

I
I

I

2

(all-_22)

m32 - a21alB_as2(all__22) (f)

Note that the particular form for the coefficients

mij has been chosen after examining the limiting values

that _i and mij must take in the limits mB _ 0 or S * Oo

They have been chosen to avoid dividing by zero in any

I

I

situation° This is particularly important if an attempt

is made to use the above technique in a numerical pro-

blemo Computers are notoriously inaccurate when they

I
must compute ratios of very different numbers°

I

I
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I

|

I

The ooefflolen_s in (5.16) are

C11 -ko2K p

'$ 011(011C33-D23) - 0 (5,16)

+ 82(2CIIC33-D23+CII(KBCII+D32"DI3 ) + D3} I

Ca)

• . _2
C33 -hoRKH (b) I

D23 - _o2LB2ko2ho 2 (o) (5+17) I

D32 • _o2LB2ko 2 (d) I

I
D13 • _o2_B2ho 2 (o)

I
D 3 - _o4_B2ho2ko 2 (t) I

I

I

I
i
I

I

Now oast (5o13) into an explicit equation for B.

This is done by subs_itutlng from (5.9) for aIj and I

regrouping in powers of B. The result is

!

KB_6+ S4{2KBCIl+C33+D32-D13} I



I

I

I
I
I

I

.I

I
I

I

I
I
I

I
I
I

I

I

59

Note that, for a given value of _2, three values of

S2 can be found. Equation (5o13) similarly expresses

three values of _2 for any value of S2o The subscript,
r

i, has been dropped in (5.17) for this reasen. Of

course equations (5o13) and (5o17) are Just two ways of

writing the same equation and cannot be solved until

boundary conditions are specified°

Thus far we have assumed that collisions were pre-

sent° To compute the cut-off and resonant frequencies

we now let v = 0o This must be done if true zeros and

infinities of (5o17) are to occur. In our numerical

work we expect that S will be small at cutoff and large

at resonance°

To compute the resonance, divide (5 17) by S6• , define

a new variable _ = I/B and let _ = 0. We obtain simply

K B = 0 at resonance (5o18)

°° = mB (5 19)° _resonance o

To obtain the cut-off frequencies set 8 = 0 in (5.17)o

We thus obtain

CII(CliC33-D23) = 0 (5o20)
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One solution to (5.20) gives a cut-off frequency

identical to that obtained for a waveguided filled with

a plasma dielectric° Joe.,

Cll = ko2K p + X2 = 0 (5.21)

Solving (5o21) for the cut-off frequency gives

_//u 2+X202 (5 22)
uCE = o °

It will later be seen that when 8 = 0 the elgen-

value, X, can easily be found since the transcendental

boundary equation which determines X decoupleso

The other cut-off frequencies satisfy a more com-

plicated equation derived from the second root of (5°20)°

CIIC33 - D23 = 0
(5o23a)

Expanding (5o23a) by using the definitions of (5o17.)

gives, for the cut-off,

2{2=o2+UB2+X 44 2(u2+C2)} + =o=C - =C

+ X2{mo2U2+(mo2+mB2)C 2} + X2u2C 2 = 0 (5o23b)
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•{2=o2+=B2+X2(u2+C2 ) }

UC = 2

2 2 l/2
¢{[=B2+X2(u2-C2)] ÷ 4 =o =B }

2

(5o24)

To proceed we must determine Xo Butnow this is

quite easily done since several of the coefficients in M

vanish when 8 = 0o In this case M becomes

M

8=0

1

= 0

0

0

I

m32

0

m23

i

(5025)

The diagonalized equations are, by definition, of

the form

(Vt2+_i2)u i = 0 (5o26a)

and solutions can be written in the form

u i = Air i (5o26b)

where A i are constants°

In terms of ui, the original fields are given by

I!:> u1>= M u 2

u 3

(5.27a)

I
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Using (5.25) and (5.26b), the fields with 8 -_ 0 are

I
I

I
ez = Alf I (a) i

hz = A2f 2 + _3f3 (b) (5.27b)

(c)
= A3f 3 + m32A2f2

Applying the boundary conditions (with : 0) gives

31 0 0

df 2 df 3

m13 d---n-IllA2

A 3

: [0] (5.28)

df2 df 3

0 m23 _ d--_

Setting the determinant of coefficients to zero and noting that

the common m_itiplying term, (i - m13m23) is generally not zero,

gives

fllc = 0 (a)

(5.29)

df2 df3 1dn dn c = 0 (b)

Re-examining the original equations shows that the eigenvalue

determined from (5.29a) must be used in the computation of _CE in

(5.22) and the eigenvalues determined from (5.29b) must be used in

(5.24).

I
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Note that the out-off frequency, given by (5022),

is independent of the magnetic field while the other two

I cut-offs, as expressed by (5o2_), depend on uBO Note

also, frma the dispersion equations presented in Chapter

I 2, that this is also the case for the plasma equa-cold

tions_ The H-mOde cut-off frequencies are found to

increase w_th increasing mB while the E-mode cut-offs

remain fixed° This behavior will be evident later when

the dispersion characteristic of the modes are found°

I
I

!
I

I
I
I

I
I

I
I

I
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CHAPTER VI

SIMPLIFICATION OF THE POTENTIAL EQUATIONS BY

THE COUPLED MODE THEORY

6 o0 Introduction

At the beginning of the work on the warm plasma

filled waveguide an attempt was made to obtain solutions

by employing the formal diagonalization procedure°

Several difficulties were encountered and the approach

was abandoned° First, it was found that explicit solu-

tions for the cubic eigenvalue equation, (5o13), could

be found only in the uninteresting cases where w >_ w
o

or mBo Thus, solutions to the eigenvalue equation had

to be sought numerically° Also, a very complicated

transcendental equation arises when boundary conditions

are applied and this transcendental equation must be

solved simultaneously with the eigenvalue equations o

One of the eigenvalues is usually quite large, on the

order of w/u, and when this quantity occurs in the

argument of one of the Bessel functions in the boundary

equation extremely oscillatory behavior occurs and

numerical solutions are very difficult to obtain o

Finally, it was felt that involved numerical solutions

would be of limited value since a complete analysis has

64
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to be made for every change of parameters and no simple

approximate solutions are evident° Also, the physics

of the wave interaction is obscured by the complicated

algebra.

In the following development we shall use the fact

that one of the eigenvalues is very much larger than the

others to simplify the equations for the potentials°

Physically this means that the potential fields consist

of components which vary slowly with position and arise

from the smaller eigenvalues plus a rapidly varying term

arising from the large eigenvalue and due to the pres-

sure° To clarify these ideas and those to follow con-

sider equations (5°8) where the off-dlagonal terms are

written as forcing terms°

2 = (a)
{ Vt2 + all} ez -fe

2
{ Vt2 + all} hz = -fh (b)

{Vt2 + a_3} ¢ = -re (c)

(6 o0)

If the coupling vanishes the right-hand side terms

of _a.re _Oo To obtain a qualitative idea of the

behavior when coupling is present assume that the

coupling changes the dispersion relation very little

from the uncoupled values° (This is true when the

The notation of chapter has been changed by replacing

the diagonal term all by a_ to indicate the square of an
eigenvalueo _i
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frequency is very high relative to the plasma frequency

and cyclotron frequency but is not true in general°) If

the terms on the right of (6.0) are neglected then the

2
quantities aii must be the square of the eigenvalues of

the differential equations. Consideration of (6o0a) with

fe = 0 will clarify this. Eqo (6o0a) becomes

[Vt2 + a_l] ez = 0

The boundary condition, e z = 0 at the boundary,

determines the eigenvalues and the values of S. Let _n

be the nth eigenvalue. Equating a_l to _n 2 and using

(5.9a) gives

= 2 KpSn 2 k o - _n 2

Now consider qualitatively the effect of the

coupling. Assuming that coupling changes 8 very l_ttle

from the above value we can compute an estimate of _ by

substituting S into a2Bo in (6.1C)o a23_ now becomes

2 KH KBa_3 = hO - 8n 2

Since ho, (m/u), is a very large quantity Sn 2 KB

has little effect on the value of a33. Also, since a33

I
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determines the spatial variation of the ¢ mode it is seen

that ¢ varies extremely rapidly compared to ezo

Finally consider qualitatively the effect of the

coupling of ¢ back to ezo The equation for e z is (6o0a)o

The exact effect of the rapidly varying ¢ mode coupling

to the e z equation depends on the magnitude of the

coefficients° However, it will generally be expected

that a very rapidly spatial varying quantity will have

little effect on a mode that has much slower natural

variations°

The above considerations _uggest that some useful

approximations may be found if we consider (6°0) to be

inhomogeneous equations with the coupling terms acting

as driving functlonso The qualitative arguments can be

expressed in a rigorous, quantitative manner by con-

sidering solutions of inhomogeneous equations in terms

of Green's function solutionso A number of basic

Green's function theorems are presented in appendix Ao

These are used in the next section to obtain a set of

simpler equations for the electromagnetic waveguide

modes°

6ol

which were presented in equation (5o8)°

Reduction of the Equatlons for the Electroma$netic-

like Modes

Now consider the equations for the potentials

For convenience

I
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I
they are written below°

I

2} ez , (a) I
{Vt2 + all = a13

{vt2 + all 2} h z = a21e z + a23 ¢ (b) (6ol) I

{Vt2 + a332} ¢ = a31e z + a32h z (c)

I

I
The appropriate boundary conditions were derived in

section 5ol and are
I

_hz I = 0 (a)
ezlc = '_n,c

(5.4)

I

I
_ _ez-a_T_Ic _b_ I

where we have defined I

a4 _-J hob (C) I
2

ko |

We now restrict the development to consider only

solutions for which ISl << hoo Later it will be seen

c.,at this is an excellent approximation, even near

resonances, since collisions restrict B to a finite

value, the maximum value of which is still much smaller

I

I

I

See footnote on Page 65. I

I
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than hoo These solutions will be called the electro-

magnetic solutions° In this case it is noted from an

examination of the coefficients in (6ol) that

2
a33 % ho2K H = (m) 2 KH, generally a very large quantity°

u

It will be seen that this fact allows equation (6o2C) to

be simplified considerably° (The development that

follows is related to the coupled-mode solutions for

coupled equations [24])o To express the simplifications

analytically it is necessary to consider the Green's

function solution of (6olc), considering the right-hand

side as a driving term°

In general it is possible to express the fields in

(6ol) in terms of complete sets of functions which

satisfy the uncoupled Helmholz equations and appropriate

boundary conditions_ (The specific functions to be used

later are tabulated in Appendix Bo) Write these as;

Ze z = anen

n

h z = _==_, bEw_

¢ =_ CmW m

m

(a)

(b)

(c)

(6°2)

!



7O

_ solution of (6o2C) can now be found in terms

of the Green's function for ¢_ From (A.8) we obtain

¢ - -a31 (Xo)G¢(XolX)ez(Xo)dX o

a I

,.._ a2

-a32/_(Xo)G¢(XolX)hz(Xo)dX o

a1

+a 4 [P(Xo)G¢(XolX) dezia_

d x o .al

(6.3)

where G¢(XolX ) is the Green's function for ¢o This

Green's function has been chosen with the boundary

dG¢ I = 0 since ¢ satisfies a Neumann type ofcondition--_ c

boundary condition° Assume now that e z and h z are

expressed by uniformly convergent series as in (6o2)

where the elgenfunctions satisfy equations of the

Sturm-Liouville type with elgenvalues _n and yg. In

this case it is shown in Appendix A that the integrals

in (6o3) can be evaluated and the result is;

I

I
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I

I Xn2_a332 - a32 2
y 2-a33n

I a 2

I +a31_ an deXn2-a332 [p G¢ _o]

n a I

(6 °4)

]a2
+ a4[o G¢ _--

---O

aI

I
I

I
I

I
I

An approximation will now be made which must later

be checked and will allow (6°4) to be simplified

greatly° This assumption is that the major contribution

to e z and h z is from the first few Fourier coefficients°

In particular, it is assumed that an and b_ are very

small when _n or yg approach ho. This will occur for

large values of n and _ slnce,for n and g small,X and

are on the order of ko for waveguides and frequencies

considered here° Note also that the denominator in (6.4)

I

I
I

can never be zero since a33 is a complex quantity° If

this assumption is true then the sums can be approximated

2 since it contains h 2 is
by the first terms and a33 , o '

much larger than the eigenvalues. Equation (6°4) can

then be written

I

I
¢(x) = a31 e + a3--_22h z + (a 4- a31---_)[p G¢

a332 z a33 a33

dez a2
-- ] (6,5)
dx

o

a 1

I

I
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To obtain (6°5) the terms _n 2 and _ 2 have been

dropped in the first two sums and (6°2) has been used to

express the fields in terms of the sums° Note that the

last term in (6°5) is a function determined by the

evaluation of the Green's function at the boundary°

From the results in Appendix A it is seen that the con-

tribution from this term can be found by solving the

equation

V 2 + a332h¢, = 0 (6 6a)t /

subject to the boundary condition

[a a317 dez
dn Ic = 4 h___d-_-Ic (6.6b)

¢(x) can thus be written

_(x)--a_2 ez + a-_2 hz + ¢'

a33 a33

(6o6C)

Now substitute (6o6C) into (6.1a) and (6olb) and

combine quantities in e z and h z to obtain a new set of

equations for ez, h z and ¢'o

I
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2

(Vt2 + bll } e z = bl2h z + b13¢' (a)

2} hz + ,{Vt2 + b22 = b21e z b23¢ (b)

{Vt2 + hp 2} ¢_ = 0 (c) (6.7)

dh z

ezl c = d--_-I = 0
C

(d)

de z
d¢'_l = b 4 d----_[
dli 'C C

(e)

The coefficients are

2 2K
bll = k° p

- B2 (I+
2

£°29B 2 ) (a)

KH (l-S 2- )

b22 = ko2(l_ v o ) (Kp o B ___)_B2
KH(I_j ) -B2--ko2 )2

(b)

J__£Bko B

b12 = KH(I_J_2- _ (c)

b13 = -Jgo2ho s (d)
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_P_BkoB Kp (e)

b21 = -J KH(I_J_v )

_hok o
b23 = _ (f)

(1-J_..)
v

(6°8)

hp2 = ho2KH _ B2KB (g)r

h B

b4_ _j o (h)2
k
O

In the computation of the above coefficients we

dropped ratios such as ko2/ho2 _ (_)2 compared tohave

unity°

2 2
Note that the coefficients bll , bl2 , b22 and b21

defined above are identical to the similar coupling

coefficients defined by (2.10) for the cold plasma

equations. If ¢' is dropped from (6.7) we thus obtain

the cold plasma equations° This fact leads to an

interesting physical interpretation of the contribution

I

I
I

I

I

I

I

i

I

i

I

I
of ¢ to the equations°

The pressure, through (6o6a), is seen to consist of

two distinct parts° One component is due to the number

density variation occurring in the cold plasma equations

and not dependent on Vpo The second component is due to

I

I

I

* h_ 2 has been used in place of a332 to show its relation i

to _o 2, hp 2 = a332 = ho2K H - KB82o

!
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the boundary conditions imposed on the velocity field

and produces pressure variations which are not spatially

related to ez and h z. The spatial behavior of this

component is determined by (6.7c) and, because hp is

very large, will be a very rapidly fluctuating term.

The assumption that the rapidly fluctuating com-

ponents of the pressure due to feedback from ez and h z

was negligible will be checked later.

The elimination of volume coupling from _ is very

convenient since it is now possible to proceed with no

approximations to reduce (6.7) further and exhibit the

forms of the solution in an illuminating manner.

We will now separate the equations into two sets of

equations that will prove useful later when the solu-

tions are sought.

Consider the effect of _' coupling to h z and e z.

Since _' satisfies a homogeneous equation its influence

upon the other fields can be found exactly through

equation (A.II).

6.2 The Hybrid E Modes

The following form will prove useful later when we

consider solutions that approach the E-type waveguide

modes in the high frequency limit.

Denote by ez_ and hz_ the contribution to ez and h z

by _' alone. Thus, hz_ should satisfy the equation

!
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(Vt2 + b222) hz ¢ = b23¢, I

!
From (AolI), using the fact that ¢' satisfies (6.7c), we

obtain de' a2 I

-b23 b23[P Ghd-K-oo]al

hz¢ = hp2-b222¢' + hp2-b222 (6°9) I

where Gh is the Green's function for hz¢.
The total

field h z can thus be written in terms of the two parts of

(6°9)°

-b23
h z - 2¢

hp2-b22
' + h z' (a)

where (vt2+b 222)h z' = b21e z (b) (6.10)

de'
dhz' b23 dn c b23b4 dez

c = 2 = hp2_b222 --_Ic-'dK "1 hp2_b22

(c)

Substituting (6olOa) into the equation for ez gives,

I
I
I

I
I

I

Vt2+b I 2)e z , +( i = bl2hz
b12b23

2_b 2 )¢'
(bl3- hp 22

(6.11)

Look now at the magnitude of the terms multiplying

_'°

I

I
I
I

I
I

I
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| ,+

to2,t' 2 _(u)2 "bz3I bz2b23 & -31o2hoB <'1. KH(I-J'_)] c
I b13- hp2-b222 '_ (6.12)

I Thls shows that the volume coupling from h z to e z

I due to ¢I is on the order of the speed of sound over the

speed of light squared compared to the direct coupling

I of ¢' to e z.

The set of equations that will be used to find the

I hybrid E modes are

I <'t2 + bl12)ez" bl2hz' + b13,' (a)

!

| (,t 2 + hp2) ,,. o (o_

I
eZl c m 0

I
dh z '

| _-lo-

(d) (6_13)

de z

b5 d--n--Ic (e)

de s

I dn-_Io " b, d-"n'--:_'
(f)

I

I

I
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Here we have defined

2_BkoB

b5 b23b4 = j o= 2

hp2-b222 (1-JI_)KHk c

(6.14)

Finally, equation (A.II) can again be used to

exhibit the functional form of the fields more clearly.

Thus ez will be of the form,

-bl_@' + ez'

e z = hp2_bll2

(6.15)

An equation for ez' could be written, but is not

of interest now.

Equation (6.15) shows that ez, like hz, is composed

of a slowly spatial varying component, ez', and a

component directly proportional to @'.

6.3 The Hybrid H Modes

Now we will formulate the equations in a manner

particularly useful in later work when the modes which

reduce to the H modes are investigated. In this case

we first find a reduced equation for ezo From (A.II),

p_oceeding_exactly as i_the pr_ious section, we find

that the contribution to e from @' in (6.7) is
Z

I
l
I

I
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I
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-b-_¢' b.., { dG _ t[2

.. _ .b._ + ±_ | ,,_, ...._ee|
=z¢ - . 2 .. 2 h 2 b 2 |-v,. dn|_ (6.16)

np -Ull p - Ii _ L J _i

The total field can be written,

I -b_ 'ez = 2_ _ + ez' (a)
hp -bll

I where

I {Vt2+bll2}ez ' = bl2h z (b) (6o17)

i b_¢'

ez' [c = h 2_b 21c (c)

I p - ii

I Substitute (6.17a) into the equation lot h z to obtain

b 2 b

I {Vt2+b222}hz = b21ez ' + [b23- h 21h13]¢' (6.18a)

p -"_1

I The magnitude of the second term multiplying ¢' is

I

I
I
I

again very small compared to the first term. This shows

that the coupling from ¢' through ez is considerably

smaller than the direct coupling from ¢' to h z. Thus

(6.18a) is very accurately given by

{Vt2+b222}hz = b21ez ' + b23¢'
(6o18b)

I

I
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It is now desired to obtain a set of equations for

ez', h z and ¢'. To do this it is necessary that the

boundary condition on ¢' be expressed in terms of ez'.

Take the normal derivative of (6.17a) and evaluate

at the boundary.

de z ,
dez -b13 d¢'l + I (6 19)

- 2_bi12 dn c dn cd-K-I c hp

I

I

I

i

i

I
But I

de

de__'l +.=b4 d--A.-_.lcdn c

Therefore I

ezlblIded--_-lc 1 + 3b4 z

hp2_bll _ = ,.-.,SK-Ic

de I hp2-bll2 1 dez '
= ' dn I C

dn z I C hp2_bll2+blBb4

The desired set of equations is thus,

(6.20)

I
I

l

I
I

(Vt2+bll2}ez ' = bl2h z (a)

!

{Vt2+b222}hz = b21ez ' + b23¢' (b) I
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I {Vt2+hp2} ¢' = 0

I ez'Ic = b6_'Ic

(c)

(d)

I
dh z

na-K-Ic = 0 (e)

I
de' I = _ dez' I ,.-.'_

I nB-K-lc "7 --d-fi-'c _'

I The boundary coupling terms are

b. ^ -j to2 B

I b6 = h 2 _ 2 % --6"_oKH- (a)

p -°ll

I r hn2-bll 2 I _ -JhoBKH

b7 = b4 /. 2 F 2. . I _...-F":--_-T-_2,2
| L"_-°n *b_3°,I _._c-'o

(6o21)

(6.22)

(b)

I

I

Note that the boundary condition on e z' depends on

the value of _' at the boundary° In the next section

it will be shown that (6o21d) can be written as a mixed

l

I
I

l

boundary condition on ez'o

6°4 Derivation of Mixed Boundary Condition for ez'

An examination of (6o21) shows that _.' depends on

de z '

--_ through the boundary condition° Since the boundary

de z '

condition on ez'involves ¢' it will also depend on --_

and actually is a mixed boundary condition° An examina-

tion of the solution for ¢' will show that this is the

I caseo

I
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Consider the solution to (6.21c) in a circular wave-
I

guide for modes having no azimuthal variation. The

solution is tabulated in appendix B, (BT), and is

-aJ ° (hpr)
¢'(r) = (6.22a)

hpJl(hpa)

I

I

I
where a is the waveguide radius and a is

(hp2-bll 2 )b_
_ez (6 22b)

a = hp__bll2+_bl3 n_-6--Ic

I
I

I
I

In this case hp is approximated by ho_ H since,

82 2
by hypothesis, << ho •

Since h o is generally very large at microwave fre-
i

quencies (6.22) can be evaluated near the a__ I

expansion for the Bessel functions__i I

-a cos(h r-_/4)

_'(r) = .
np sin(hpa-_/4) I

Cos h a+sin h a I

@'(a) = _ { cos hPa-sin hPa } (6°23)
D

P P= P ' I

Now define hpa fi+J_ where both I.l and I_I are

much greater than unity and expand (6°2_). In this I

case sinh _ • cosh _ _ %_and (6.23)becomes I
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• a cos n+sin .+_(cos n-sin .)}_'(a) = R-" { cos n-sin n-J(cos n+sin n)
P

(6.24)

Simplifying further gives

@'Ca) * _ (6.25)
P

Now substitute (6.25) into (6o21f) and use (6.22b)

to obtain the mixed boundary condition for ez'.

!

J b13b4 dez I' (g 9g)

ez'!c = hp(hp2_bll2+b4bl3) dn 'c ....

Even if it were not possible to use the asympototic

expansion a mixed boundary condition could still be

found for ez'o In the general case it is not possible

to exhibit the boundary condition quite as compactly as

(6.26) since one must retain the solution for _'.

Generally, since h o is so large, (6°26) will be an

excellent approximation°

605 Relation to the Cold Plasma Model in the Zero

Temperature Limit

In all the above derivations it was assumed that

2 2 2

hp was much larger than bll or b22 .
This assumption

will almost always be valid for the electromagnetic

modes, 82 << ho 2 . In particular, note that as the

I
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temperature is lowered the approximatlon becomes better I

since ho2 _ (_)2 and __fo, Thus.,,_,LasT ÷ O._;b_.- =o I

The above equations for the warm plasma model are in

a particularly useful form to consider the zero tempera-

ture limit. Recently the question whether or not the

warm plasma model reduces to the cold plasma model has

!

!
been the subject of some controversy. In two articles

_iilllll ]C20]
in the same volume of Electronic Letters Wait

!
claims that the warm plasma model reduces to the cold

plasma model and Lee et al claim it does not!18_n a

later paper _21]Wait says "Strictly speaking, (Lee's

conclusions are) quite true; however, it should be

pointed out that, for any finite distance from the

I
I

I
boundary, the transition to the cold-plasma solution

is indeed uniform." An examination of the equations

derived above will verify the statement° However, it

will also show that the boundaryterm arising from the

pressure mode is still extremely important° This point

I

I

I
will now be discussed in some detail°

From the results derived in Chapter 2 it is evl-

dent that the cold plasma model yields physical

inconsistences since the election velocity at the walls

can be quite large. With the warm plasma model the

I

I

I
additional boundary condition vn = 0 is available and

must be satisfied for any temperature. A detailed

!

!

!
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examination of the normal component of velocity will

I give some insight to the behavior at the boundary and
allow us to look at the zero temperature limit in detail.

I • Using (3.5b) to recover the actual velocity from

the normalized velocity in (3o30a) gives;

,. __' g 2k k 2 de_ kc2
._ * _llml , _ o . 0 0 p r ^ z + _ de]

i IK_ -_-2" _v n = --AE.-_--% K L-_ --_ J "h-- dnP K4 _o • . o

2_Bko2kc 2 dh z-JAo
2 --_} (6.27)

K_

Consider (6o26) very near the boundary° We will
dh

Z

omit the term --_ in this discussion since it is zero

precisely at the boundary° v can be written in terms

of the primed fields through equations (6o19)o

de z '

an

Jkc2ra31 de z, a32 dh '- ,

bl3d_' ]+-_-oL7 z÷d_]--_ dn +h _ dn dn
hp p p

(6°28)

Using (6.19h) to express
dh z ' de z '

in term givesdn dn

Vnl _{-s+ Jkc2a312 + Jkc2a322

r÷a hohp hohp
h

b23b 4 de z '

2_bl12+b4b13 ')}
P

8b13 Jk 2
-c } de'+ {-----_ +

hp ho dn

(6.29)

I
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Now consider the magnitude of the terms multiplying

de z '
in (6.28). Note that the second and third terms

dn

in the bracket are generally much smaller than 8 since

they both are on the order of (_) 8 _ 10-68o Neglecting

these terms we find,

dez' b13 kc 2 d_'

v I _ -8 -SK- + {8 _ + J --6- } --d-6 (6.30)nr÷a o
P

In essence the above is Just another derivation of

the boundary condition (6o19i). However, the approxi-

mation introduced shows up more clearly° Some objection

might be raised to neglecting the terms that are dropped

in deriving the boundary equation° However, in the

numerical work required to solve such equations one

seldom requires that the remaining quantities approach

zero to this limit since the effect on the dispersion

curve or eigenvalues being sought is generally negli-

gible, i.eo, practically we are only interested in 8

or the field quantities to the first few significant

figures.

Now consider the low temperature limit° As T ÷ 0

the boundary condition on e ' becomes, from (6_

de z , z

e z'Ic = 0o dn ic will not be zero and the contribution
de '

Z

from _' must Just balance -8 --_. Since the quanti-

ties multiplying d_' approach zero as 1/ho, d_--_'must
dn dn

I
I

I
I
I

I
I

I
I

I
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T
o

r=a (a-r)

To/4

r=a

To/16

r=a
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(a-e)

(a-r)

Fig. 6 1 - Sketch of d¢'I Near the Waveguide
" dr'

Boundary for Different Temperatures
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approach infinity in the same limit° Thesolution for

¢' obtained for the circular waveguide and given by

(6.2_) has exactly this behavior° It is illustrative to

de'
plot -_ for different values of temperature. The

magnitude of this function is shown in Fig. 6.1 for

decreasing values of T and with collisions sufficiently

large that the exponential and oscillatory behavior

are comparable°

d_' approaches a function veryNote that for T÷0, dr

similar to the delta function° Even in this case, where

the influence of the pressure is absent a short distance

from the boundary, right at the boundary the normal

velocity must vanish° Thus it must be said that the

warm and cold plasma models do not correspond and that

the inclusion of the pressure term resolves the non-

physical difficulties arising from the cold plasma model.

In resolving the difficulty in the cold plasma

model we have caused another problem° In the original

fluid equations we neglected the term, (VoV)_o For

very small temperatures this term may now not be negli-

gibleo The actual value of the non-linear term has to

be investigated for a particular problem to see if

(_oV)_ is truly negligible compared to mVo
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To sum up the discussion we can say that generally

it is expected that use of the cold plasma model or

zero temperature limit of the warm plasma model in

bounded problems will cause physical inconsistencees to

occur. We will henceforth assume that the temperature

of the plasma is not zero.

Finally, note that in all the derivatives in this

chapter we have assumed that h ° was a very large number

by comparison with other terms with which it might be

combined. In particular, IBI << hoo This last res-

triction limits the discussion to what we have called

the electromagnetic modes° It will be seen when solu-

tions are found that the assumption is very well Justi-

fied.

Another set of modes, the electro-accoustio solution,

exist where B _ h o. It would be possible to derive a

reduced set of equations for the case similar to (6o19)o

However it is generally Just as simple to work with

the original equations. These modes will be discussed

in the next chapter.

I



CHAPTER Vll

APPROXIMATE SOLUTIONS FOR THE NORMAL MODES

7 •0 Introduction

At this point a procedure similar, to that used in

Chapter 2 could be followed to obtain solutions for the

normal modes° Such a procedure has been outlined by

Sancer and by Chen and Chen_. Instead, a coupled-mode

approach will be pursued. This procedure is discussed

briefly in Frledman[_and is quite similar to the

F_nberg iteration procedure discussed by Morse and

Feshbaclho [27 ]

Although the cases considered in this work have

been for a uniform plasma, the non-uniform situation is

of interest° The method of solution by transformation

of the differential equations to a diagonal form is

M-1applicable only when the transformation matrix,

commutes with the differential operators° This is not

the case when the plasma is non-uniform.

The iterative method used here is general enough

to apply to the non-uniform plasma. It also has the

advantage of yielding a hierarchy of approximations,

the higher order approximations including more terms

in the solution o An examinatioh of the various approxi-

mations gives a good i_}_a of the way the various modes

90
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couple and of the signlficanceof the coupling. This

procedure shows simplifications which can occur in an

otherwise very complicated problem°

In the treatment to follow we will classify the

solutions as 'E', 'H' and 'p' modes, the designation

indicating that the solutions obtained approach th@se

uncoupled modes in the limit of zero plasma frequency

and cyclotron frequency°

The formal method of solution to be derived is in

fact exact. Only after deriving the equation for the

dispersion relation is it necessary _ __m_,_ the

result. This approximation is necessary in order to

truncate an infinite secular determinant for the dis-

persion relation° The accuracy with which this can be

done depends on the degree to which the modes coupleo

7.1 The Hybrid E Modes

Now consider the modes which approach the electric

modes in the limit of zero coupling (or m -_m ° and mB)o

The reduced equations derived in Chapter 6 were

very useful in demonstrating the functional form of the

modes° However, in the derivation to follow it is more

convenient to start with (6°7)°

Assume that all the fields can be expressed in

complete sets of functions which satisfy the uncoupled

I
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eigenvalue equations subject-to the appropriate boundary

conditions° These eigenfunctions are solutions of;

I

I

(Vt2+Xn2)en = O; enl c = 0 (a)

dw
(vt2+_2)w_ = o; -_I c = o (b)

(7ol)

I
I

I
To derive the equation for the E modes it is

assumed that ez is the source of the other fields. I

These fields are found and substituted back into the
i

equation for ez and an equation for the coefficients is

found. Let the fields be given by •

|

e z =Zanen (a)

n

¢' = Z CmWm
m

(b) (7.2)

(c)

I
I
I

I
Equatlons _6o7) are reproduced here for convenience. I

(Vt2+bll2)ez = bl2h z + b13¢' (a) I

(vt2+b 222 )hz = b21ez + b23¢' (b)

I

I

I



I , 93

I

I

" /I

I

2+hp2(vt )+, = 0 (c)

dh z
ezl c = --.B-6ic - 0 (d)

de z
de', = b 4 I (e)-'a"_lc -'a-6 c

(7.3)

I First calculate ¢'. From Appendix A, (A.3),

I

de' a
¢, = [G¢(XolX)p(x o) d---_-]o

o

The Green's function for this field is;

Wm(Xo)Wm (x)
2

-Xm-+h p

(7.4)

(7+5)

I
I

I

Assuming (7.2a) is a uniformly convergent series,

the boundary condition can be written

de n_._icd¢' = b4 as TI c
n

s

(7.6)

I
I

I

Substituting into (7.4) gives

-b4_as(es,Wm )

¢'(x) =_,{ s
m -_m2+hp 2

}Wm(X) (7.7)

I

I
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The notation (es,W m) is used to denote the boundary

evaluation° This notation, together with the notation

_es,Wm> for the scalar product is discussed in Appendix A.

Now compute hzo Using (7.2b) to expand (7.3b) gives

Z (-Y_ 2+b222)b&w_ = b21Z ases + b23 Z CmWm

S m

(7.8)

Taking the scalar product of (7.8) with w£ gives

(-_z2+b222)bL = b21 Z as_s'W_ + b23 Cm6zm

S

(7.9)

Here we have used the fact that @' and h
Z

expanded in the same orthonormal functions.

Substituting for Cm from (7.7) gives,

are

(--f _2+b222)b _ Z b23b4(es,Wg)= as{b21(es'W_- 2

s -7_2+hp

} (7.10)

The expressions for nz and ¢' can now be substituted

into (7o3a) to yield an equation for the coefficients

for ezo

Z (-_n2+bll2)anen =b12 Z bgwg+ b13 Z CmW m (Till)

n £ m

I

I
I
I

I
I

I
I
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I

Taking the scalar product with en gives

(-)_n2+bll2)an=bl2 Z b_(en'W¢>+ b13 _. Cm_en'Wm> (7.12)

L m

Substituting from (7.7) and (7.10) for b_ and Cm gives,

(-An2+bll2)an=bl2

,- as[b21<es,W_>- b23b4(es'W_)]V

Js -T_2+b222

V_
A f

'b4 /,_, _s'es'Wm' i

Z<en'W£>+ b13 2 <en'Wm >

m -Vm2+hp

I (7.13)

I

I

Interchanging summations and replacing the dummy

index m by £ gives

I (-Xn2+bll2)an = Z as {b12b21 Z

s

I
- V E _3_4

I 2 2)
(-'r_2+b22) (-lr_2+hp

(es,W¢) (en,Wi>

-T£2+b222

+ b13b4

(_T2+hp2) ]

I
(es,Wj,)(en,W£}} (7.14)

I
I

i
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Equation (7o14) is an infinite set of equations

which must be solved for the complex wave number, B,

and the coefficients an° Note that the derivation of

(7.14) is so far exact, ioeo, it is not a perturbation

method and no terms have been assumed to be small.

However, to obtain solutions of (7.14) the infinite

set of equations must be truncated° This implies that

for n sufficiently large the an approach zero.

Morse and Feshbach _i_ _ discuss equations similar

to (7o14) and discuss solution by an iterative techni-

que where all terms but the first are set to zero, the

zeroth order value of _ found, then the first four

terms are retained and the zeroth order solution is

used to obtain the first order 8, etco We shall use

a similar technique, except that a root-searching

method will also be employed° The numerical results

are presented in the next chapter°

Note that if the second sum is omitted from (7.14)

we obtain the spectral solutions for the cold plasma

model. In fact, this was done in obtaining approximate

solutions from which to proceed with the numerical solu-

tions obtained in Chapter 2°

At this point we will digress from the problem of

finding the normal modes so that we may check the

reduced equations derived in Chapter 6o

I

I
I
I
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By proceeding in the manner to be illustrated all of the reduced equa-

tions can be shown to yield to the original fields when the spectral

representation is used for the primed fields. To clarify this we will

re-derive equation (7-14), starting this time with (6.10).

-b23
= ¢' + h' (6.10a)

hz b2 _ b222 z

h' satisfied (6.10b) and the solution is;
Z

a <es, w£_h, = [ {b21; s -}w,"" z - 2 ,
£ s -Y£ + b22-

[ as(es, w£)
b23 b4 s %_,,
2

hp - b222 (__£2 + b222) ""£

(6.11)

Substituting for ¢' from (7.7) and combining gives,

a <e s, w£>
hz [b21 [ s

= 2 b222 w££ s -Y£ +

+ [ { b23 b4

- b222 s£ b 2 [ asCes, w £) [

1

2 2
-y£ + h

P

1

2
-y_, + b222

(7.15)

]}w
m

I
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Clearing the fraction givel

b23b4Zas(es,W A)

_. Z a,<e_'w_> s }w, (7 16,

hz " £ {b21 B "YL2+b222 -VL2+b222)(-YL2+hp 2 o

This result is identical to (7o14) which was derived

from the original equation for hz, (?o3b)o

7,2 The Hybrid H Modes

The preceeding derivation for the coefficients in

the expansion of the perturbed E modes was straight

forward and involved no approximations beyond those

made in deriving (607)0 This was the case because the

¢' modes depend directly upon ezo

In deriving an equation for the expansion coeffi-

cients of h z it is desirable that the field e z which

couples to h z be expressed as simply as possibleo In

particular, we wish to avoid having to solve an infinite

set of equations for the expansion coefficients of ezo

We can accomplish this most easily by using the field

e z' derived in (6o17) to express the coupling to hzo

Further simplification is achieved, with little loss of

accuracy, If the _nhomogeneous boundary (6ol7e_}..is

'I - 0replaced by the.Simpler condition, e z c o

Again assume the fields can be expressed by the

spectral representat_ used previously where now

I
!
I

I
I

i
I

I
I
i

I
I

I
I
I

I
i
I
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!

!
e z' = Z anen (7.17)

n

!

I
The boundary condition used here, ez'Ic = 0 will

be accurate if h o is sufficiently large and if e z' can

be represented reasonably accurately by the first few

I
!

I
I

terms in the series. The exact boundary condition on

I e z' was discussed in Chapter 6. The accuracy of the

assumption can be checked after calculations have been

made and generally it is found that the assumption is

excellent.

From (6.21a),

_ {-_n2+bll2}anen = bl2Lj_ bjwj

n j

I a n = bl2 _ bj(en,Wj>

{-Tn2+bll 2 }

| J

(7.18)

¢' is now given by (7.7) where b 4 is replaced by

(7.19)

These relations are now used to compute h z.

equation for h z is;

I b7"

Z an(en,W m

I ¢' = -b_ Z{ n,

m -Vm2+hp 2' }Wm(X)

|

!
The

!

!
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2 2

{V t +b22 }h z = b21e z' + b23 ¢'

dh z
-- 0dn

(a)

(b)

(?°20)

In terms of the spectrums;

_ {-v_2+b222}bLw _

£

{-_'£2+b222 }b

I
I
I
I

I
I

n m

I
L = b21_n an<en,W£> + b23Cm6£m (7o22) I

Substituting from (7o19) and (7o20)gives I

{-'Y£2+b222}blt' -- b21Z { b12 2 Z bj<en'Wj )}<en'w£ ) I
n (-'yn2+bll) J

-bTZ an(en,W ,) I

+ b23 { n

_T 2+hp2 } (7o23) I

Z bj<en'Wy> <en'W_> I

-- b21bl2 Z { _ . }

n -_n2+bll 2 I

I
I
I

{ , b12

b23b?_ I -_n2+bll 2}Z bj<en'W_> (en'WL)-

n -Yg2+hp 2

I
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I

I

I
I

I
I

I
I
I

I
I

I
I

I
I

I

I

i01

{-yi.2+b222 }bz = Z bj {b12b21 Z <en'W_> <en'Wg>

J n -)'n2+bll 2

b12b23b7 Z <en'Wj> (en'W_)

2 __n2+bll 2-_£2+hp n

} (7.24)

Equation (7.25) is again an infinite set of alge-

bralc equations which must be solved for the wave

numbers and the coefficients° It is similar to the

equations for the coefficients of en derived previously

for the E modes except that the boundary coupling due to

the pressure mode enters with a difficient coefficient.

The remarks previously made about the effect of h on
P

the second sum are pertinent here and the coefficient

of the second sum is approximately°

-b12b2367 %
2

h
P

-go4gB2ko282

KH(1-Jgv)2[KHkC 2-go 2B2]

(7o25)

Finally, solutions for the perturbed pressure modes

will be derivedo

7°3 The Electro-Accoustic Modes

The solutions considered so far have been explicitely

restricted by the assumption that IBI << boo This

restriction effectively omits the pressure waves which

I
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can exist in this case where the elect_on-gas was assumed

to behave as an ideal gaSo This class of solutions is

now consideredo

To start the development we will useequations (6ol)o

I

I
I

The potential,

terms of complete sets of functions as given by (6o2).

Note that en satisfies the boundary condition enl c = 0

in this discussiono Here ¢ is considered to be the

source function generating the other fields°

ez, h z and ¢, can again be expressed in I

I

I
With ¢ regarded as the source we can solve for the

other fields in terms of ¢ and then substitute to find

a self-consistent equation for ¢ itselfo Proceeding

in the manner illustrated in section 7°2 and 7_3 we

find

I
I

I

an = a13 _ C_ <en,W4>

J (-An2+all 2)

(7°26)

where an and Cj are the expansion coefficients for e z

and ¢ respectivelyo

I
I

I
The expression for e can now be used, together

z

with the spectral representation for ¢, to find h
Z °

The result is

a21_, an_n,w_) + a23 Cj 6_j

n
b =

(__2+a222)

(7o27)

I

I
I

I
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where h
Z

and we have used the fact that the expansion functions,

w_, are an orthonormal set°

Substituting the above expressions into (6olC) and

assuming ¢ =_CmW m gives the following expression for

C o m
m

{(-_m2+a332)
a23a32

(_ym2+a222) }Cm

=ZCjZ a13 <en'W_ )

j n (-_n2+all 2)

a32a21 ]<en, Wm>
{[a31+ ( 2+ 2_

AIA t ,-

- a4(en,Wm)} (7o28)

Again we obtain an infinite set of o_,,_*_ _

must be solved for the expansion coefficientso Although

at first sight (7°28) is an extremely lengthy equation

an examination of the magnitude of the terms shows

that it can be simplified considerably with negligible

loss of accuracyo To see this note that in the limit

m _o or mB the coupled potential equations, (6ol),

decouple and (7o28) becomes simply (-_m2+a332) = 0o

(i.e., alj , i • J, approach zero as m _ ®)o In this

limit 82 is given by 82 = ho2 __m2W_ o But since Ym
D

!
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is an elgenvalue determined only by the geometry and

is generally very small compared to h o (it is usually

on the order of k at microwave frequencies) we can
O

write B ÷ h o as w _ -o

If it is now assumed that as the frequency is

lowered 8 does not deviate from h o by more than a few

orders of magnitude then (7.28) can be simplified

m

considerablyo Using the assumption that JsJ >> ko,

substituting for aij explicitly in terms of the plasma

parameters and comparing the magnitude of the terms,

we find that, to an approximation which neglects terms

of order (U/C) 2, (?028) is given by

a332Cm _Z CJZ al3a31(en'Wm> <en'W_>2)
J n (-An2+all

(7.29)

Actually, we need not have gone to so much trouble

trying to simplify (7°28) if we were interested only

in evaluating S and C since (7.29) is not that much
m

simpler than (7028) from a computational standpoint.

However, the previous arguments shed considerable light

on the physics of the interaction of a pressure mode

m

Note that the argument that jSj _ h impllcltely
assumes that 8 is never zero and thls°implies that

collisions will keep JsJ quite large, even at a frequency

where, for the colllslonless case, 8 would vanlsho

I

I
I

I
I
I

I
I

I
I
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with the other field quantities° In partlcular, by

considering the quantities that could be neglected we

can say that the dispersion characteristics of the

accoustlc mode are virtually unaffected by the volume

coupling with the axial magnetic field or the boundary

coupling with the axial electric fleldo Mathematically

this means that the normal ¢ mode can be very closely

approximated by solving the equation

C1a11alvt2 +

a3i a3_ k-/

= 0 (7o30a)

= -_ZI = 0 (7o30b)ezlc ore"C

Generally, (7o30) has two possible solutions and

one solution, that for which 181 << h o, must be dis-

carded since the above arguments apply only for the

pressure mode° Note, however, that when mB = 0 the

differential equations for e and ¢ reduce to the form
z

of (7.30)° Sancer [14] has covered the details of the

solution in this case°

This completes our work on deriving methods of

solutions for the coupled potential equations° These

methods all yield an infinite set of equations from
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which the coefficients must be found° In the next

chapter solutions for the fields and di-spersion rela-

tions are obtained for the circular cylindrical waveguideo

7°4 Relation to Perturbation Theory

It has been mentioned that the method of solution

derived in the preceeding sections is exact and the

ability to compute the dispersion relations and the

fields rests entirely on our ability to solve the infi-

nite set of equations for the coefficientso The method

was developed as a generalization of a perturbation

method suggested in Friedman [233o Since the perturba-

tion method is simpler and often as accurate as the more

complicated method presented above it is presented here°

The presentation will closely follow that given by

Friedman°

To employ a general treatment consider an equation

of the form

I
I

I
I
I

I

I
I
I

I

I
I

I

(Lo-_)u = -ALu (7o31) I

|
The equations for the modes can all be written this

form if we let L o ÷ Vt2 , _ = -bll 2, u = e z for E modes, I
2

=_-b22 ; u ÷ h z for the H modes, etco If instead of

expressing the right-hand-side of the equations in terms I

I

I



I
l

I
I

I

I
l
I

l
I

I
I

I

I
I

I
I
I

lO7

of the spectrum of the coupled modes, the formal Greens

function representation of the coupled modes was used,

then AL would be an integral operator and (7o31) is an

integral-differential equation. This is important since

an integral operator is bounded°

Now assume that AL is a small operator, ioe., a

bounded operator with bound ¢o Also, the homogeneous

form of (7o31) is an eigenvalue equation with eigen-

lunction vn and eigenvalue _n o

•(Lo-_n)V n : 0 (7°32)

To employ the perturbation method we now assume that

is close to the nth eigenvalue _ and that u is close
n

to the nth eigenfunction v
n °

We put;

2
= _n + ale + m2c + ooo

2
u = vn + Wl¢ + w2¢ + ooo

(a)

(b)

(7033)

where =i are unknown constants and w i are unknown

functions. Substituting (7°33) into (7.32) and

separating into equations having llke powers of c

gives an infinite set of equations which can be solved
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for ai and Wio We will retain only the first power

in ¢.

u can be represented in terms of the spectrum of

L0 •

U _ _ akv k

k

(7°34)

Substituting (7o34) into (7o31), and utilizing the

spectral representation of the operator from (7.33)

gives,

Z 1 (Vk, ALu_
U = X_Vk

k

v k
(7°35)

Since we have assumed that u is of the form (7o33a),

the coefficient of v must be unity.
n

the first term in (7°35) to one gives

Therefore, equating

- "n _ <Vn'ALVn>
(7.36)

Using this value of X in (7.35) gives

0

" Z 1 (VK,ALVn> Vk
u_ v n + _-Vk_

k

(7o57)

I

I
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where the prime indicates that the summation is taken

over all k except k = n.

The above development is essentially that given by

I
I

I
I

Friedman. Now it will be applied to our problem for

the case of the hybrid-E modes. The extention to the

other modes is obvious.

To proceed from the formal theory Just presented to

the specific case of the hybrid-E modes it is necessary

simply to cast the equations for ez into the form of

(7o31) and identify terms° The algebraic manipulations

I

I

I

in section (7ol) accomplished this and the equation for

the coefficients of the Fourier coefficient of ez, (7.14)

is in the form of (7.31). Examining the terms in (7o14)

shows that

_, <en,Wl_<en,W_>
I VK'ALVn = b12b21 _ + b22 .2_¥t2

i

( ) (en,W >
- [b_12b23b4 + b1364] en'W_ t

(-T t2b222 ) "(-'It_2÷hp 2 )

!
(7o38)

I
Upon making this identification, it is now a straight

! forward procedure to solve for the perturbed wave numbers

!

!
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and field quantities. The dispersion relation is found

from (7.36) and in this case becomes

2
bll - _n 2 = <Vn,aLVn> (a) '

(7.39)

e z is given by;

ez = en + Z

k_n

l ,

bl12__k2 (VK, ALVK> eK (b)

The advantage of the previous developments of an

iteration method for determining the dispersion relations

and Fourier coefficients was that it was an exact solu-

tion (within the approximations concerning the magnitude

of B compared to h° or ko) to the problem. The disadvan-

tage is obviously that we are left with an infinite set

of equations to solve and some method of transaction

clearly must be employed°

The advantage of the above perturbation method is

its simplicity, but the accuracy of the method depends

on the assumption that the eigenvalues and fields can

be expanded in a series of the form (7.33) which is

characterized by a smallness parameter, Zo This implies

that the actual fields and wave number should not deviate

appreciably from that of the uncoupled equation if the
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method is to be useful° In the next.chapter the

iterative equations are used to obtain solutions-for the

dispersion relations for the various modes of propagation°

Along with some of the dispersion curves, a plot of the

magnitude of the Fourier coefficients is given_ When

the magnitude of this coefficient is considerably less

than unity the perturbation method can be expected to

yield accurate results° It will be seen that this is

the case for a considerable portion of the spectrum, in

particular, for frequencies not too close to the cyclotron

frequencyo If the frequency of interest is in this region

then the perturbation m_thnd..._...__w_11..___giv_ _ c_mn1_ _n_

accurate solution of the problem.



CHAPTERVIII

SOLUTIONSFOR PROPAGATIONIN A CIRCULAR GUIDE

8.0 Introduction

In this chapter the iterative techniques developed

in Chapter 7 will be used to obtain dispersion curves

for the plasma modes. The curves presented here are

obtained by numerically solving equations (7.14), (7.25)

and (7.29) for the hybrid E, H and p modes respectively.

The analysis of this chapter is restricted to lowest

waveguide modes having no angular variation. The

geometry and coordinate system used is shown in Fig o 8.1

and the normal modes used in the expansion procedure

are given in Appendix B.

Fig. 8.1 Cylindrical Waveguide Filled with Warm

Anlsotropic Plasma
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In order to calculate the dispersion curves and

field structures for the various modes we must solve an

infinite set of equations for the Fourier coefficients

of the particular mode. Our ability to solve these

equations depends on being able to truncate them, which

in turn implies that the Fourier coefficients must fall

off rapidly° Practically, it is possible to carry only

the first few terms in the equations in a numerical

computation since computation time increases approximately

as the square of the number of coefficients° In the

numerical work we have carried _hrou_h the compuSatlo:_

of three coefficients° It will later be seen that this

is generally s!_fficieJ_t and for a large portion of tb _

spectrum the first coefficient, corresponding to the

empty waveguide mode configuration, gives an excell_i"

description of the mode°

The iteratlve procedures employed are now discussed°

8ol The iterative Procedures

Generally, the equations that must be solved to

determine the expansion coefficients and dispersion

relations are of the form

Qnan : Pnsas (8.1)
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Two methods have been employed to solve (8.1). The

first method has been discussed by Morse and Feshbach

and is called the Feenberg Iteration [27]. It will be

outlined below where, for concreteness, we will use

(7.14) for the hybrid-E modes as a specific example.

For the E modes the terms in (8.1) are;

Qn = (-_n2+bll 2) = {-_n2+ko2Kp -82(I+ _°2_B2
KHK 2)} (8.2a)

Pns is the coefficient on the right of (7.14). It

is noted that 82 can be factored from this term so we

can write in place of (8.2),

Qnan = 82Pns_s_ (8.3a)

where Pns = B2Pns (8.3b)

To employ the Feenberg iteration a series of

approximations are used to find higher orders of 8. The

value of 8 found is then used to compute P' for the
ns

next order of 8, etc. To illustrate, first neglect the

right hand side of (8.3a) to obtain
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ko2K _A 2
,p n

2
go gB 2

I +

KHK_2

(8.4)

Next, omit the off diagonal terms and using (8o4)

compute the zeroth order value. Since P' are functions
ns

of 8, the value of 8n_ I is used in the computation of

8 n •

2K __ 2
2 ko p n

8o - Zo2ZB2 (8°5)

1 + * P' (B _)

KHK2 nn -_

To obtain the first order value of S let an = 1 and

retain two off diagonal terms°

{Qn-Pnn} = 82p_qaq

{Qq(Bo)-Pqq(So)}aq = eqn(8 o)

(8°6)

Equation (8.6) is then solved for 812o

The procedure can be continued indefinitely° As

mentioned previously, the equations are carried to

second order in this work o

I



116

Solutions to (8.2) will be obtained by this method only

if the procedure converges. Condions for convergence are

discussed by Morse and Feshbach. Inpractice, when the method

does not converge the second ord_r_equationsare used and the

Poisson iteration techniqueis employed [28] This method, which

employees iteration on 6, is much more time consuming th_n the

first so is used only when the Feenberg method fails.

Perhaps themost striking point ,about the Feenberg

method when actually carrying out the calculations is its

simplicity and accuracy for most of the spectrum. Note that

Equations (8.4)-(8.6) are simple algebraic equations which

can be easily solved. The main difficulty occurs in summing

the series in (7.14) etc., and in some cases, such as for the

parallel plate waveguide, the series can be summed in closed

form [26] In many cases one would like to have a rapid and

fairly accurate method of determining dispersion relations

without tedious numerical work. The formula (8.5) is quite

useful in this respect. For this reason B° as determined from

(8.5) will beplottedwith some ofthe more accurate dispersion

curves that are now presented.

A compnter Pr°grmm'writteninALGOL'whichhasbeen

used to compute the dispersion curves ispresented for

reference in Appendix C.
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8°2 The Hybrid-E Modes

Now solutions for the modes which reduce to the E

modes in an empty guide will be considered by solving

(7.14) for the expansion coefficients ano Before dis-

cussing the solutions a simplification which can be made

is discussed.

If the coefficients of the second sum in (7.14)

are computed it is seen that this term is

S_-

&o282(es,W&)(en,W&)

2
k
C

Z ho2[kp2 2]
-V&

-%g+hp) (-%g+b22) (-%

(8°7)

Here the boundary term (enJW £) has been factored

from the sum slnce it does not depend on £o (See

Appendix B)o The terms in the sum can be separated by

partial fractions and simplified by using the assumption

2 I >> k 2 or 1821 to give (omitting the multi-that lhp o

plier)

' _' -ho 2 ho2(kp2-V&2 )

2+hp2 + hp2(_y$2 _ [ 2(_y ) &2+b222)(_y 2+k 2)£ hp & n

] (8.8)

The contributions from the two terms will be greatest

near resonancesoWith An @ 7£ the denomenators will never

become zero° (This is one advantage of including

I
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collisions° In particular, if collisions were neglected

resonances with h could occur and would be a very
P

2

sensitive function of _ and Uo) Since hp is approx-

ho2KH and h o = _/u is a very large number atimately

microwave frequencies the first term in (808) is negli-

gible for small _ and the second term is negligible for

1

large vz, both quantities approaching ho2KH2 in absolute
value in these limits°

Notice that ho2/hp2 _ 1/KHo Since the temperature

appears in the sound speed it is seen that the second

term in (8o8) will contain no temperature dependent

terms° The same argument can be made about the first

sum in (7o14)o Thus all the significant temperature

dependence comes from the first term in (8.8)°

Consider the contribution of the first term in (8.8)

2
at a resonant point where _

2

- Real hp o
This will be

the dominant contribution. In this case this term

contributes a value

-1 (8°9)

S_l = KH[ho21magKH ]

Typically, ho2 is on the order of l0 I0 (assuming

_ l0 l0 and u _ 105)o Thus for any appreciable value

of collision frequency the denominator in (8°9) will be

a large number and the contribution of the first term

I
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in (808) to the sum will be very small° In fact it was

found during numerical work that the effect of this term

could not be seen when plotting data. In an effort to

reduce computation time the sum has been omitted from the

computer program and as a result no temperature dependence

is shown on the dispersion curveso If one is particularly

interested in the effect of temperature it is a simple

matter to add the contribution of S_2 to the sum in the

program, called S2EH in Appendix C, and investigate the

temperature dependenceo

With this approximation (7_,14) can now be written

(-hn2KH+bll2KH)an = _ as{

s

Zo4£B2ko2Kp82

)2(l-_Z

£o282

+7S2e }
c

Sle

(8o10)

where

(en,W_)(es,W _)

(-T_2KH+b222KH) (-T_2+_n 2) (_v02+_s 2)

i (kp2-T_2)(es,WL)(en,W £)
S2e = ......_.(b2 2 2)(.T 2+_ 2)

2 -T_ _ n

(8olla)

(Sollb)

Equation (8oi0) is solved by the method outlined in

Section 802o The solutions are now discussed°

I
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An attempt has been made to choose the plasma para_-

tbrs-_tor, wh__/_hedisper_o_i_¢_e_..e_ept_t.ed to,

have values which can be achieved in the laboratory° At

the same time they have been chosen to exhibit the various

interesting regions which occur. The plasma frequency

is chosen to be 2 x l0 l0 which corresponds to an election

gross number density N O = 1o26 x l017 particles/m 3o The

electron cyclotron frequency has been taken to have

values below plasma frequency, between the plasma fre-

quency and cutoff and above cutoff° The range of magnetic

field strength necessary to achieve these values is

500<B o < 405 Kilogausso The waveguide radius has been

chosen to be 1.5 cm and gives an empty guide cutoff fre-

quency of 076 KMC, a fairly low microwave frequencyo

This low value has been used since the plasma parameters

can be more easily realized in this regiono It is

fairly difficult to achieve plasma densities much higher

than the one used here or magnetic fields higher than

several KGo Our main interest is in the structure of

the dispersion curveso When a particular region is of

interest the waveguide cutoff and cyclotron resonant

locations can easily be found from (5o13b) and(5o24) and

the zeroth order value of B given by (8o5) can be used

to give a reasonable idea of the behavior of Bo
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The collision frequency has been chosen, after some

experimentation, to yield curves where the resonant

structure is clearly exhibited but does not vary so

drastically that the behavior near cyclotron resonance

is difficult to ploto High values of collision fre-

quency wipe out the resonance completely° This behavior

is illustrated by exhibiting 8 for one set of plasma

parameters and different values of _o The majority of

the curves are plotted for _ = 005 _o o

Since we are interested in the mode structure as

well as the dispersion curves the second two Fourier

coefficients in the field expansion are plotted. Note

that since we are truncating (8.10) in three equations

we effectively assume that the dispersion relation depends

on the coupling of the first 3 normal modes, eno It

was pointed out earlier that the modes can be written

as a slowly spatial varying quantity and a term propor-

tional to the pressure term ¢'o (See (6o15))o The

slowly varying term is thus represented by

ez' = _' ane n (8.12a)

n=l

and the rapidly varying pressure-excited term is

I
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-bib ¢ '
e" = (8.12b)

z hp2_bll 2

It is implicitely assumed that the contribution

from (8o12b) has negligible effect on the dispersion

reduction° (This assumption is made when the term in

the sum S_ containing the temperature was dropped)

However, once B is found it is easy to plot the fields

since ¢' can be found in closed form. The total axial

___e_''_ _'_-'_-_.l_°/l_i'_,f(8o12a) and(8ol2b), the field

h z is given by (6o10a) and ¢' is found by solving (6o7C)o

The field structure for, e z, h z and _ will be shown for

one of the dispersion curves.

Now consider the dispersion curves for the hybrid-E

modes plotted in Figures 8.4-8o8_@ These curveW_are

plotted for _o = 2 x i0 I0 and the cyclotron frequency is

varied°

It was previously stated that a good approximation

to B could be found by using (8°5) with the Feenburg

iteration procedure° To illustrate this point Bo has

been plotted in Figures (8.2) and (8°3) and should be

compared with the more accurate accompanying curveso It

is seen that Bo approximates the more accurate expression

for B quite closely except for a region near cyclotron

resonance° The results obtained near mB have been plotted

as a number of disjointed points°
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From the behavior of these curves near _B it may

be anticipated that the Feenburg iteration will not

converge near the cyclotron frequency° This is the

case and to find B it is necessary to employ a root

searching method such as Poisson's iteration formula°

The difficulty can be found by examining the magnitude

of the Fourier coefficients shown with the dispersion

curves. Near _B the higher spatial harmonics are

strongly excited° These terms are neglected in computing

8o . Also, if the uncoupled electric modes are examined

it is seen that they all have resonances near _B o Thus,

near the cyclotron frequency the system of coupled equa-

tions behaves somewhat like a set of coupled oscillators,

each component of which is tuned to the same frequencyo

Now we digress slightly and consider the solution

of a simple coupled oscillator circuit where the two

tuned circuits are tuned to the same frequencyo The

behavior of this circuit sheds some light on the cause

of some of the dispersion characteristics found from

the coupled mode theory°

Consider the circuit shown in Fig° 8o_o Assume

the two resonant circuits are tuned to the same fre-

quency, _i o The behavior of the response curve is

well known [31] and is plotted in Figure 8o5 where a is

a parameter which typifies the coupling betwee_the cir-

cuits
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Fig. 8.4 - The Double Resonant Circuit

f Y
a=i

a--O 5''_

a=2

Fig. 805 - Response of the Double
Resonant Circuit for

Different Values of Coupling
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a = i is the condition of critical coupling,

a _ i overcoupling and a < i undercouplingo

The coupling between modes in our equations is

quite complicated and generally the coupled oscillator

analogy is not exact since we are dealing with eigen-

value_equationso However, the analogy does make

plausible some of the dispersion curves that arise°

The dispersion curves for the E modes for different

values of mB are shown in Figures 8°4-8°8° Note the

double resonances that appear near the cyclotron fre-

quency in some of the _urv_ Sinc_ the _nd _rm_n_

e2, is excited quite strongly near the cyclotron fre-

quency it appears that the presence of this mode gives

use to a double resonance similar to a = 2 in Fig, 8o10o

The magnitudes of the higher Fourier coefficients

(with a I = I) are plotted on a semi-log scale wlth each

dispersion curve° In each case it is noted that the

higher harmonics are most strongly excited near cyclo-

tron resonance and are excited somewhat less strongly

at plasma resonance° In all cases coupling virtually

vanishes near cutoffo This must be the case since it

was seen previously (Chapter 5) that the equations

decouple when B = 0o

I
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An interesting set of curves are obtained when the

cyclotron frequency is smaller than cutoff. For an

empty waveguide propagation below cutoff is, of course,

not possible. In all cases it is seen that a wave can

propagate below the plasma frequency, although in

practice the wave may be highly damped.

The dispersion relations for _B = -1.5 wc has been

plotted for th_ee._alues_of_@llisio_._requen_y and-are

shown in Figures 8_T_a;and8,8.The effect of increasing

collisions is to considerably lessen the cyclotron

resonance, and to a lesser extent decrease m&Enitude of

_}@_ma resonance.

Note also the similarity between the dispersion

curves for the warm plasma model and those presented

for the cold plasma model in Chapter 2. Of course, the

behavior of B vs m for the two models should not be

expected to differ greatly since the equations obtained

in Chapter 6 were very similar to those used in Chapter 2

to describe the cold plasma°

Once the dispersion characteristics of a particular

mode have been found the functional form of the ez, h z

and _ forms can be obtained by computing these fields

from their spectral representations° It would be far to

space-consumlng to plot the field structures for all of

I
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the modes so only the e z and h z fields for the hybrid-E

mode with wB = 1.5 and v =°05 wo have been plotted° The

magnitudes of these fields as a function of frequency is

shown in Figures 8_ and _do The magnitude of the

pressure mode has not been plotted since the functional

form of this field is rather difficult to ploto Instead

a table of values of the components of the normalized

pressure is included below° To understand this table

remember that, for the hybrid-E modes, _ was separated

into two terms as expressed by (605). These are

* = *I + _' (a)

(8.13)

where

a31$i = _ ez + hz

a33 a33

(b)

and $' is a solution of (6o6a)o The solution of 6o6a)

was given by (6o22a) and in this case is well approxi-

mated by (6°23)0 ioeo,

_'(r) = Ae _'(r-a){ c°s nl+sin nl+J(c°s nl-sin nl)

cos no-Sln no-J(cos no+Sin n o )

(8o14)
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2.0

1.8

1.53

1.36

_I.O

0°8

:0.4

0.2

1o7x102

1.61xlo 2

5.0x101

2olXlO 2

4.5

2o5Xi01

508

2oOX101

n I

2o16XlO 5

io56Xi05

I j,
l.gxio"

6o7XI03

i 4.6x103

5olXlO 3
i

i

I 6o 7xlO 3

lo2XlO 4

4. IxlO 3

5.5xi03

t
4.5xi0 4

1.27xi05

2.0xlO 5

2o4Xi0 5

2o6XI05

2o6XI0 5

Maximum value

of ¢l(r)

7.6xi0 "4

l.lxlO -3

2°6xi0 -_

5.8xi0 -3

Io22XI0 -4

lo3XlO -3

9o4XI0 -3

2o9Xi0 -3

Table 8.1 - Components of ¢ as a function of Fre-

quency for the Hybrid-E Modes with

_B = -1o5 mCE and _ = 0°05 wo

!
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]-_ nl Reallh Ir,where we have defined A - , - p

- Reallhpla , and _' = Imaglhplo a is defined by (6o22b)on o

Evidently, ¢' is a functlon which behaves as a damped

slnusold_ Thus a good idea of its form can be obtained

by tabulating the magnitudes of the damping factor,

_' = Imaglhpl , the oscillatory factor, Real lhpl and the

amplitude, Ao The values of these factors along with the

magnitude of ¢i as a function of radSus for various

values of the normalized frequency are tabulated in

Table 8ol. Note in particular that the magnitude of ¢'

is much larger than the magnitude of ¢I" This was the

initial assumption used in deriving equations for the

hybrid E and H modes in Chapter 60

8.3 Dispersion Curves for the Hybrld-H and Hybrid-

pressure Modes

To complete this chapter some dispersion curves for

the hybrld-H and p modes are now shown° These curves

were obtained by the procedure outlined in Section 8_i

and essentially the same approximations were used to

simplify the sums° Equation (7024) was used to find

the coefficients of hz and (7.28) was used to find ¢_o

Consider the curves shown in Figures 8oli and 80120

These curves were obtained from (7024) by the iterative

technique discussed previously° Note that these curves

behave in a similar manner to the corresponding curves
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obtained for the cold plasma model and shown in Figures

2.4 and 2o5. In particular, the cutoff is increased as

mB increases and no resonant behavior occurs near the

plasma frequency°

Finally, consider the dispersion curves for the

pressure modes, Figures 8.13 and 8.14. Note that the

scale has been changed hereo

The pressure modes, of course, are not present when

the cold plasma model is used to describe the plasma.

They are introduced only if the electron gas is assumed

to be compressible m_ ^_-_ _...._-_ t_-_ gio iz_r ne ect

effects the solutions of the electromagnetic modes was

discussed in Chapter 6 where it was seen that inclusion

of the pressure effectively changed the boundary conditions

on the cold plasma equationso

The other way in which inclusion of compressibility

changes the solutions is, of course, the addition of the

pressure mode to the solutions° In any practical

experiment the question of whether a pressure mode can

be seen depends to a large extent on the attenuation of

the mode. Note that, for the values of parameters chosen

here, the imaginary part of 8 is always quite largeo The

inclusion of collisions is seen to smooth any resonant

behavior around the cyclotron frequency to such an extent
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that the resonance is almost completely obliterated°

The more important point is that the attenuation is

so large that a pressure wave with the dispersion

characteristics shown above could probably not be

observed in any experiment°
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CHAPTER IX

CONCLUSIONS

9.1 Summary of the Work

The main objective of this work was to obtain solu-

tions for the normal modes of propagation in a warm

bounded plasma. In Chapters 3 and 4 it was shown that,

for the cases of a drifting uniform plasma and a

stationary, non-unlform plasma, all the fields could be

found in terms of the axial electric and magnetic fields

and the pressure° These fields were called the potentials

for the problem.

Generally it was found that the coupled differential

equations satisfied by the potentials were too difficult

to be solved unless it was assumed that the pla6ma was

stationary and uniform. This assumption was therefore

made and, in this limit, the coupled potential equations

reduced to the coupled Helmholtzequatlons discussed by

Sancer [14]. Before these equations could be solveu it

was necessary to find appropriate boundary conditions

for ez, h z and _. These were derived, in Chapter 5,

from the physical requirements that the tangential

electric fields and normal component of the velocity

vanish at the boundary. In the general case it was

found that the boundary conditions on h and _ were
Z
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coupled, as shown by (5.4). However, if we restricted

the analysis to modes having no tangential variations

the boundary conditions on h z and @ decouple and simplify

the analysis considerablyo

The solutions for the potentials was then considered

in Chapter 60 The analysis was temporarily restricted

to two of the three possible modes, those for which 181

was much less than w/u. With this assumption it was

shown that the coupled equations could be greatly

simplified and, in fact, were very similar to the equa-

tions that describe the potential when the cold plasma

model is used to describe the plasma° It was for this

reason that the cold plasma equations were presented in

Chapter 2o With the equations in a form so close to

the cold plasma equations it was relatively easy to

examine the relation between the cold plasma equations

and the warm plasma equations in the zero temperature

limit° We concluded that the solutions were not identical

in the limit T ÷ 0o

With the number of coupled Helmholz equations reduced

from three to two we could have proceeded as in Chapter 2

to obtain solutions by diagonalizing the equations and

obtaining solutions to the complicated boundary equations°

Instead, an iterative method of solution was developed
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to obtain an exact solution of the problem in terms of

an infinite set of equations for the Fourier coefficients

of the fields° This method was developed in Chapter 7

for solutions of the hybrid-E, H and p modes, where the

designation E, H and p indicate that the hybrid modes

reduce to the pure modes in the high frequency or small

coupling limito Chapter 7 was cQncluded with a brief

discussion of perturbation solutions for the problem.

In Chapter 8 a method for solving the infinite set

of equations for the Fourier coefficients was discussedo

A computer program, presented in Appendix C, was written

to carry out this procedure and was found to work very

well, except when the frequency was very near the

_$_tA on ves•_-_e**_yo A number u_^_dispersion u_

was then shown and the field structure of the potential

was presented for one value of parameterso

9°2 Discussion of the Results

Probably the most interesting and useful develop-

ment in this work is the reduction of the complicated

warm plasma equations to a simpler set of equations

very similar in form to those used in the cold plasma

analysiso With the solutions to the problem available

it is possible to reevaluate the assumptions that were

made in Chapter 6 when the reduced equations were derived°

I
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These were that IBI should be much less than hoK H and

that e z and h z were very accurately represented by the

first few terms in their spectral representationso An

examination of the dispersion curves and magnitude of

the fields shows that this is indeed the case.

In retrospect it should come as no surprise that

such a reductiDn of the equations is possible if it is

remembered that the linearized fluid equations used to

describe the warm plasma included Just an additional

moment of the Boltzman equation° However, at the

beginning of this work a method of realizing this

reduction was by no means obviouS°

In the course of this work a number of approxima-

tions and assumptions were made in order to obtain a set

of equations that could be solved. The restriction of

the solutions to modes having no tangential variation

was not actually necessary, but was done to simplify the

analysis. The restriction that the plasma be uniform

and stationary was much more essential since without

this restriction the differential equations become much

more complicated than the Helmholz equations we had to

solveo In some cases, where drifts or non-uniformities

are not large, it should be expected that solutions may
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omission simplifies the problem° Often it is possible

to estimate the magnitude of the error.involved in

dropping terms and in these cases one may Justify, a

pol_i_ the_or_al_equations_.o (A very complete

treatment of the derivation of various moments of the

Boltzman equation and the approximations inherent in

their truncation can be found in Tanenbaum, Ref;.1!_

In the final analysis, the degree to which a parti-

cular model accurately describes the physical phenomena

must be determined by experiment. Unfortunately many of

the wave propagation experiments which have been per-

formed have been in geometries which are not easily

analyzed and experimental data pertaining to this work

is not available. One very successful application of

the warm, uniform, isotropic plasma equations has

recently been published by Kolett_so He finds that, by

defining an effective plasma frequency for a non-

uniform plasma column, the theory and experiment agree

very closely° It is expected that the same procedure

could he applied to our resultso Note that, in order to

compare experimental results with the theoretical

analysis, it is necessary to insure that the proper

mode is excited° In particular the dispersion curves

for modes having no angular variation must be excitedo
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Finally, it is noted that the equations we have

used here may apply to a wider class of physical

phenomena than the gaseous plasma° The equations some-

times used to describe waves in solid state plasmas are

very similar to those used here and experimentation in

this field may be very rewardlng. [3D]



APPENDIX A

GREEN'S FUNCTIONS AND COUPLED MODE THEORY

A. 1 Green' s Functions

In this appendix several general relations which are useful in

obtaining solutions to coupled differential equations will be derived

by considering solutions in terms of appropriate Green's functions.

First the solution of one dimensional inhomogeneous Sturm-Liouville

equations will be reviewed. (32)

The most general inhomogeneous equation we will consider is of

the form

d dw
_p(x) _+ [q(x) + 12a(x)]_ = -a(x)f(x)

(A.I)

Let G(xJx o) be a Green's function which is a solution of

d dG
_P _+ (q + k2a)G = -6(X-Xo)

(A.2)

Solutions to (A.I) can be constructed frcm the Green's functions

as follows. Replace x by x° , multiply (A.1) by G , (A.2) by

, subtract and integrate to obtain
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_(x) =
a

f a(Xo)G(x o [x)f(Xo)aX o
o

+ D(XolX)p(Xo) d_ dG ]a
_oo-_(x°)p(x°) dXo_°

(A.3)

The boundary conditions on G must be chosen to eliminate any

unknown quantities in the evaluation of (A.3) • Suitable conditions

for different boundary conditions on

Feshbac_.
(

8me_discussed in Morse and

A.2 The Scalar Product

The scalar product between functions satisfying Sturm-Liouviile

equations will be used frequently in the text. It is evaluated here

for reference.

Consider the scalar product of two functions,

which satisfy

_' and ¢
n in

d_

d n X_c]_n O (a)_P _--+ [q + =

de
d

P _+ [q + Ym2 ]¢m = 0 (b)

(Ao4)

The scalar product is defined to be

_lq > =< ' Cm

a 2

f _ VnCmdX

aI

(A.5)

I
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Here the bracket (or bra _nd ket) notation is used to signify the

scalar product, after Friedman (23) •

Combining (A.4) as before, and integrating we obtain;

dW dem a2

(_n2_ 2 _nCm dx + [PCm_-Tm )I _ dx Wn _-_]
aI

= 0 (A.6)

It is convenient to introduce a notation to signify the

evaluation of the boundary terms. Define

dw d¢ a2
n m

(Wn'¢m) -=[P(¢m d-_ -Wn _--')]

aI

(A.7)

Thus

Wn' > =< Cm

(Wn' Cm )
(A.8)

A. 3 Coupled Wave Solutions

The above derivations are quite well known. Now consider some

relations which are of particular value in obtaining solutions to

coupled equations. First suppose that the function f(x) appearing

in (A.I) is a solution of a homogeneous Stunn-Liouville equation.

df

d o %2)foo" 0_P _-'_-+ (q + _ =
(A.9)

In this case the integral in (A. 3) can be evaluated by
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combining (A.2) and (Ao9) .

a2 fo(x) i
I e(Xo)G(xoiX)fo(Xo)dXo -
al _2_ _2 _2__2O O

df a2
o dG

[p(a _---- fo_--)]
o o aI

(A.10)

.'. v(x) =
fo (x) i

k2-k2 X2_X2
0 0

(fo,G) + (W, G) (A.ZZ)

Next, suppose that f(x) in equation (A.I) can be expressed

as a Fourier series of functions satisfying (A.4) .

f(x) = Z anW n
n

(A.12)

Assuming that the series (A.12) is uniformly convergent a

similar evaluation of the integral can be made. The result is

aw a

= Z n n Z ---D--n(fn,G) + (_,G)
2 2 X2_X2n kn-k n n

(A.13)

I



• I

158 I

APPENDIX B I

EIGENFUNCTION AND BOUNDARY VALUE SOLUTION FOR CIRCULAR GEOMETRY I

For reference the eigenvalue solutions and boundary value
I

solutions for the circular wavegulde are tabulated below.

normalization and scalar products are tabulated.

B.1 Eigenvalue Solutions

Also the I

I

The functions en and wm that are used in Chapter 7 to

expand the potential field are solutions of

d d X2 = en(a) = 0{ _r _+ n r}e n 0, (a)

dw

d d 2 r _'-'_wm O, m{ _ r_-=__.+ Ym = __-:--I = o (b)
L&L" '

1,_:a

(B.I)

I

I
I

I
The normalized eigenmodes are I

J°(knr) I
en = N (a)

n

where kn = Pon/a (b) (B.2) I

and N 2 = a2j_-(kna)
n 2 (c)
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Jo(_mr)
_m N

m

(a)

where Ym = Plm/a (b) (B.3)

and N 2 = aZJ_(Yma)
m 2 (c)

For circular geometry the weighting factor used in Appendix A

in the discussion of the Sturm-Liouville equation is the radial

coordinate, r . The boundary quantity thus is defined as,

_T f'v _, ,"I.T (y "_'1,
_O''rn _ _ _0" rl _"

[ ]
_en'WmJ = N N dr

n m o

-_'naZo(Yma) J! (}'na)

N N
n m

21n Jo (Yma) Jl (Ina)

(en,Wm) = _--_-- iJo(Yma)I IJ1(Xna)l

2_

(en,Wm) = + _ (-l)m(-l) n (B.4)a

In the above derivation the normalization factors,

defined in (B02) and (Bo3) have been used.

N and N
n m

The scalar product is defined as

a rJo(_n)Jo(_m)dr

< en,W m > = I N N
o n m

(B.5)

I
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B. 2 Boundar), ValUe:Solutions

It is of interest to exhibit solutions to the equation

d dw
r _+ qZr_ : 0 (a)

-_l : _ (b)
a

The solution is,

-_Jo(qr)

_(r) : qjl(qa )

(B.6)

(B.7)

I .
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APPENDIX C
I.

COMPUTER PROGRAM FOR COMPUTING THE

DISPERSION CURVES FOR THE WARM PLASMA

The following is an abbreviated computer program

(for carrying out the Feenberg iteration procedure)

J

written in ALGOL° The only deviation from standard

ALGOL is the use of complex variables where necessary°

The program is separated into two parts, procedures and

the program bodyo It is felt that the program is fairly

self explanatory if reference is made to the explanation

of the iteration procedure given in Chapter 8o A brief

explanation of the meaning of the procedures will be

given to aid the reader°

Procedure

LNI(NI)

L2(N2)

G2(M2)

Function

Computes Ano
values of J

o

Computes An 2

Computes _m2o The first 9 eigen-

values of J1 are stored°

OD(N2) Computes (-i) n

BNDRY(NM,SL) Computes (en,Ws)

The first 9 eigen-

are read into storage

I

An excellent treatment of the use of ALGOL adequate to

acquaint the reader with the language can be found in
McCracken, Refo 29.

I
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Procedure Function

EDOT(N,M)

SIEH(NM,SL,SKP)

Computes <en,Wm>

Evaluates the first sum appearing
in (7.14) or (7.23)

S2EH(B02,NM,SL,SKP) Evaluates the second sums appear-

ing in (7.14) or (7.23)

su_3(M,J) Evaluates the sum in (7.29)

VCALC(B02,NM,SL,SKP)

QNM(B02,NM,SKP)

FNBRG(B2,0DR)

Computes the coefficient Pnm

or P_m in Chapter 8

Computes the coefficient Qn in
Chapter 8

Computes 82 by the Feenberg

iteration as presented in Chapter 8.
ODH selects the order of the itera-

tion. This procedure can be used
to iterate on 8.

SRT,XFORM and RFORM are procedures written to compute

the complex square root, convert complex numbers

to exponential form and take the real part of a

complex number, respectively. They have not been
included.

The values of the necessary plasma parameters are

computed in the program body. When possible, variables

have been chosen to correspond to those used in the text.

For example LO ÷ _o' KH ÷ KH, etc. Since computation time

increases greatly as higher order iterations are employed

the first two values of 8, 8_i and Bo are compared. If

these differ appreciably 81 is computed, etc. If this

procedure does not converge the Poisson iteration is

applied. In this case an indicator, ROOTEST, is computed
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in FNBRG and is set to 1 if the procedure converges and

to 0 if it does not° In practice it was necessary to em-

ploy very small incremental steps when searching for

roots near m = mB. CYL is an indicator which is set to

i for the circular waveguide computation° H is an

indicator which is set to I when computing the hybrid-H

modes and 0 when computing the hybrid-E modeso PRES is

set to I when the hybrid-p modes are computed°
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PROCEDURES

REAL PROCEDURE LNI(NI) $ INTEGER N1 $

BEGIN REAL LA $ LOCAL LABEL OUT $

IF CYL EQL 0 THEN BEGIN LA=(NI'PI)/(2'A) $ GO TO OUT

END $ IF N1 LEQ 9 THEN BEGIN LA=LAMBDA(NI) $

GO TO OUT $ END $ LA=((4"NI-I)'PI)/(4'A) $
OUT.° LNI= LA $ END OF EIGENVALUE LAMBDA $

$

REAL PROCEDURE L2(NI) $ INTEGER N1

LA= LNI(NI) $ 52= LA'LA $

END OF EIGENVALUE LAMBDA SQUARED $

$ BEGIN REAL LA $

REAL PROCEDURE G2(MI) $ INTEGER M1 $

BEGIN REAL GA $ LOCAL LABEL OUT $

IF CYL EQL 0 THEN BEGIII GA=MImpI/A $ GO TO OUT $

END $ IF M1 LEQ 9 THEN BEGIN GA=GAMMA(MI) $ GO TO OUT $

END $ _GA= ( (4*MI+I)*PI)/(4*A) $
OUT°. G2=GA*GA $ END OF EIGENVALUE GAMMA SQUARED $

INTEGER PROCEDURE OD(NI) $ INTEGER N_ $ BEGIN REAL

RL $ INTEGER IN, IND $ RL= IF (H+CYL) EQL 0 THEN

(Nl+l)/4 ELSE N1/2 $ IN=RL $ IND= IF ABS(RL-IN) GTR

0.25 THEN -1 ELSE 1 $ OD=IND $ END OF SIGN INDICATOR $

REAL PROCEDURE BNDRY(NM,SL) $ INTEGER NM, SL $

BEGIN REAL TEM $ TEM= IF NM EQL SL THEN 1.0 ELSE

OD(NM)*0D(SL) $ BNDRY= (2*LNl(NM)/A)*TEM $

END OF BOUNDARY PRODUCT (E,W) * * * $

°

REAL PROCEDURE EDOTW(N,M) $ INTEGER N,M $ BEGIN

REAL TEM $TEM= BNDRY(N,M) $ EDOTW= TEM/(G2(M)-L2(N) ) $

END OF SCALAR PRODUCT <E,W_ OR E DOT W , . • $

COMPLEX PROCEDURE SIEH(NM,SL,SKP) $ INTEGER NM,SL,SKP

BEGIN COMPLEX TEMI, TEM2, SUM1, LG2 $

INTEGER K, K1 $ LOCAL LABEL SKIPSET $ OWN COMPLEX
ARRAY TEM(0ooI5) $ OWN INTEGER INT, INC, FNL $

IF SUMSIZE EQL 1 THEN GO TO SKIPSET $ IF H EQL 0 THEN

BEGIN INT=CYL $ INC=I $ FNL= IF NM GEQ SL

THEN NM+6 ELSE SL+6 $ END $ IF H EQL 1 THEN BEGIN

INT=I $ INC= 2-CYL $ FNL= IF NM GEQ SL

THEN NM+(2-CYL)*6 ELSE SL+(2-CYL)*6 $ END $

SKIPSEToo FOR K=(INT,INC,FNL) DO BEGIN IF SKP EQL 0 THEN
BEGIN LG2= IF H EQL 0 THEN G2(K)*KH ELSE L2(K)*KH $

TEM(K)= _o0/(-LG2+BEH) $ END $

$

I
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TEMI- IF X EQL 0 THEN EDOTW(SL,K)'EDOTW(NM,K) ELSE

EDOTW(K,SL)'( EDOTW(K,NM)> $ TEM2= TEM(K)'TEMI $
SUM1 = IF K EQL 0 THEN TEM2/2o0 ELSE SUMI+TEM2 $

IF SUMSIZE EQL 0 THEN BEGIN IF RFORM(TEM2) LEG

0oO050'RFORM(SUM1) THEN BEGIN IF K1 EQL 0 THEN BEGIN

Kl=l $ FNL= K+2 $ END $ END $ END $ END $

SIEH= SUMI $ END OF FIRST SUM FOR BOTH E AND H

MODES m m $

COMPLEX PROCEDURE S2EH(B02,NM_SL,SKP) $ COMPLEX B02 $

INTEGER NM,SL,SKP $ BEGIN COMPLEX TEMI, TEM2, LG2, SUM2

INTEGER K_KI $ LOCAL LABEL SKIPSET $ OWN COMPLEX
ARRAY TEM(0oolS) $ OWN INTEGER INT, INC, FNL $

IF SUMSIZE EQL 1 THEN GO TO SKIPSET $

INT=l $ INC=l $ FNL=I0 $ SKIPSEToo FOR

K-(INT,INC,FNL) DO BEGIN IF PEP EQL 0 THEN BEGIN
LG2= IF H EQL 0 THEN G2(K) ELSE L2(K)'KH $ TEM(K)= IF

H EQL 0 THEN KHW( (-LG2+KOKP-BO2/(-LG2WKH+BEH)>

ELSE Io0/(-LG2+BEH> $ END $

TEMI= IF H EQL 0 THEN BNDRY(SL_K}*EDOTW_NM,K_ELSE

BNDRY_K_NM)_EDOTW<K,SL) $ TEM2= TEM<K)'TEMI $
SUM2= SUM2+TEM2 $

IF SUMSIZE EQL 0 THEN BEOIN IF RFORM(TEM2) LEG

0o0050'RFORM(SUM2) THEN BEGIN IF E1 EQL 0 THEN BEGIN
Kl=l $ FNL= K+l $ END $ END $ END $ END $

S2EH= SUM2

$

$ END OF SECOND SUM FOR BOTH E AND H MODES m w $

REAL PROCEDURE SUM3<M,J) $ INTEGER M,J $

BEGIN REAL SUM, TEM $ INTEGER FNL, K $
FNL= IF M GTR J THEN M+5 ELSE J+5 $

FOR K_(I,I,FNL) DO BEGIN TEM=EDOTW<K,J)mEDOTW(K,M)
SUM= SUM+TEM $ END $ SUM3= SUM $ END OF

SUMMATION FOR THE PERTURBED PRESSURE MODES m • $

COMPLEX PROCEDURE VCALC(B02,NM,SL,SKP) $

COMPLEX BOP $ INTEGER NM, SL_ SKP $ BEGIN COMPLEX

TEM, KC2, DNM $ OWN INTEGER MN,LS $

OWN COMPLEX DI2D21, SMI, SM2, D12D6, BI2B6 $

LOCAL LABEL SAMEB2, PCALC, OUT $ IF NM EQL SL THEN
MN=LS_50 $ IF PREP EQL 1 THEN GO TO PCALC $

IF SKP NEQ 0 THEN GO TO SAMEB2 $
BEH= IF H EQL 0 THEN K02_(KPKH-LH}-B02WKH ELSE

KO_H-B02J(KH+LH} $ KC2=K02-B02 $ DI2D21=BI2B21mB02

IF H EQL I THEN BEGIN DNM=KH_KC2-L02_B02 $

BI2B6= BI2B6P/DNM $ END $ IF H EQL 0 THEN

BI2B6= L02/KC2 $ DI2D6= B12B6"B02 $

SAMEB2oo IF MN NEQ NM AND LL NEQ SL THEN

SMI=SIEH(NM,SL,SKP> $ IF COLDTEST EQL 0 THEN

SM2= S2EH(BO2,NM_SL,SKP> $ LS=NM $ MN=SL $

I
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TEM= IF SKP LEQ 1 THEN BI2B21mSMI+BI2B6mSM2 ELSE

DI2D21mSMI+DI2D6mSM2 $ GO TO OUT $

PCALCoo TEM= -LHnSUM3(NM,SL) $ OUT°° VCALC= TEM
END OF COEFFICIENT V SUB NS OR SUB ML , , , S

$

COMPLEX PROCEDURE QNM(B02,NM,SKP) $ COMPLEX B02 $

INTEGER NM, SKP $ BEGIN COMPLEX TEM $

OWN COMPLEX Dll, D22 $ LOCAL LABEL PCALC, OUT $

IF PRES EQL 1 THEN GO TO PCALC $ IF SKP EQL 0 THEN BEGIN

IF H EQL 0 THEN Dll= KOPH-B02m(KH+LH) $ IF H EQL 1 THEN

D22= (KOPH-K02WLH) -B02WKH $ END $
TEM= IF H EQL 0 THEN Dll-L2(NM)*KH ELSE D22--G2(NM)*KH $

GO TO OUT $ PCALCooTEM=KH-KB*B02 $ OUT°° QNM=TEM $

END OF COEFFICIENT QNM IN THE PLASMA DISPERSION RELATION $

COMPLEX PROCEDURE FNBRG(B2,0DR) $ COMPLEX B2 $

INTEGER ODR $ BEGIN COMPLEX DNMQ, NUMP, DNMP, B02,

BT2, DENOM $ OWN COMPLEX NUM, DNM1 $

INTEGER SP1, SP2, STOP1 $ LOCAL LABEL OZ, ALI $
IF PRES EQL 0 THEN BEGIN IF ODR EQL -1 THEN BEGIN

NUM= IF H EQL 0 THEN (KOKP-L2(N))*KH

ELSE K02m(KPKH-LH)-G2(N)*KH $

DNMl= IF H EQL 0 THEN KH+LH ELSE KH

IF PRES EQL 1 THEN BEGIN NUM= KH $

B02= BT2= B2 $ SPI= SP2= 0 $

IF PRES EQL 1 THEN BEGIN B02=B02/H02

STOP1=5 $ IF ODE EQL 2 THEN STOP1=1

.$ END $ END $

DENOM=KB $ END

$ BT2=BT2/H02 $

$

$

END $

$

IF PRES EQL 1 AND ODE LEQ 1 THEN STOP1=0 $

IF ITERATE EQL 0 THEN STOP1=0 $ ROOTEST=I $

AP= AQ= V(N,N)= 0o0 $ SUMSIZE=0 $
OZoo SP2=0 $ IF SPI GTR STOP1 THEN GO TO ALI $

IF ODR GEQ 0 THEN V(N,N)= VCALC(B02,N,N,0) $

SUMSIZE=I $ IF ODR GEQ i THEN BEGIN QI(P)= QNM(B02,P,0)

V(P,P)=VCALC(B02,P,P,2) $ V(N,P)=VCALC(B02,N,P,I) $

V(P,N)= VCALC(B02,P,N,2) $ IF ODR EQL 1 THEN

AP= V(P,N)/(QI(P)-V(P,P)) $ END $
IF ODR GEQ 2 THEN BEGIN QI(Q)= QNM(B02,Q,I) $

V(Q,Q)= VCALC(B02,Q,Q,2) $ V(N,Q) = VCALC(B02,N,Q,1) $

V(Q,N)= VCALC(B02,Q,N,2) $ V(P,Q) = VCALC(B02,P,Q,k) $

V(Q,P)= VCALC(BOR,Q,P,2) $ DNMQ= QI(Q) -V(Q,Q) $
NUMP= V(P,N) +( V(P,Q)*V(Q,N))/DNMQ $ DNMP= QI(P)-V(P,P)-

(V(P,Q)*V(Q,P))/DNMQ $ AP= NUMP/DNMP $
AQ=(V(Q,N) + V(Q,P)*AP)/DNMQ $ END $ IF PRES EQL 0

THEN DENOM=DNM!+V(N,N)+V(N,P)*A_+V{N _)*AQ $ IF PRES

EQL 1 THEN NUM=NUM-V(N,N)-V(N,P)*A_-V(N,Q)*AQ $

B02= NUM/DENOM $ IF ODE EQL -1 THEN GO TO ALI $

IF PRES EQL 1 THEN GO TO ALI $ IF ITERATE EQL 1 THEN

BEGIN IF ODR GRQ 1 THEN WRITE(B02) $

IF ODR EQL 5 THEN GO TO ALI $

I
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IF ABS(REAL(B02-BT2)) GTR 0o021"ABS(REAL(BT2)) THEN

SP2=I $ IF ABS(IMAG(B02-BT2)) GTR 0o021"ABS(IMAG(BT2))

THEN SP2=I $ IFSP2 EQL 1 THEN BEGIN SPI=SPI+I $
BT2= B02 $ GO TO OZ $ END $

ALIoo FNBRG= IF PRES EQL 0 THEN B02 ELSE B02"H02 $

IF ITERATE EQL 1 AND SPI GTR STOP1 THEN ROOTEST=0 $
END OF FFENBERG ITERATION OP ORDER 0 THRU 2 FOR BETA
SQUARED $
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PROGRAM BODY

C= 3&8 $ C2=C*C

U=3&5 $ U2=U*U

(0o04810)/PI $

WN= A/1.41416 $
LAMBDA(N)=Q4/A $ GAMMA(N)= Q5/A $ NORMN(N)=WN*Q6 $

NORMM(N)= WN*Q7 $ END $ N=S=l $

FOR S=(4o-l,0) DO BEGIN IF S EQL 0 THEN Q4=Q5=Io0 $
FOR N=(lol_3) DO BEGIN IF S NEQ 0 THEN READ (Q4,Q5) $

JON(N,S)=Q4/NORMN(N) $ JOM(N,S)= Q5/NORMM(N) $ END $
END $ FOR N=(lol'3) DO BEGIN

DJON(N)= ((Io41416*LAMBDA(N))/A)*(D(N) $ END $

N=S=I $ W0= 2&10 $ W02= W0*W0 $ WN= 00050*W0 $

WC2= L2(N)*C2+W02 $ WCE=SQRT(WC2) $ IF H EQL 1 THEN

BEGIN WC2= G2(N)*C2+W02 $ WCI= SQRT(WC2) $ END $

WB= -150*WCE $ WB2= WB*WB $
WCEN= IF H EQL 0 THEN io0 ELSE WCl/WCE $ NORM= WCHN $

IF H EQL 0 THEN P= IF N EQL i THEN (3-CYL) ELSE

N-(2-CYL) $ IF H EQL 1 THEN BEGIN IF N EQL i THEN

P= IF CYL EQL 0 THEN 0 ELSE 2 $ IF N NEQ ITHEN

P= n-1 $ END $ IF H EQL 0 THEN Q= IF N EQL 1

THEN (5-2*CYL) ELSE N+(2-CYL) $ IF H EQL I THEN

Q= IF N EQL i THEN 3 ELSE N+I $ START= 2°20 $
STP=STPI=STP2=-0oI0 $ STOP= 0o050 $ STP2=STP/4o0 $

FOR T=(START,STP,STOP) DO BEGIN W=T*WC $ W2=W*W $
STP= STP1 $ IF ABSCT-WHN) LSS0o21 THEN STP=STP2 $

IF ABS(T-WON) LSS 0o41 THEN STP=STP2 $

IF ABS(T-Io0)LSS 0oi5 THEN STP- STP2 $ TN=T $

LO= W0/W $ L02=L 0*L 0 $ LB=WB/W $ LB2=LB*LB $

LN=WN/W $ EP=l-J*LN $ EP2-EP*EP $ LNU=lo0/EP $

LNU2=LNUmLNU $ KP=I-L02mLNU $ KB=l-LB2*LNU2 $
KH=EP-L02-LB2*LNU $ KH2= KH*KH $ RKH= REAL(KH) $

RKB= REAL(KB) $ KPKH= KP*NH $
K0= W/C $ K02= K0*K0 $ KOKP= K02*KP $ KOPH= KOKP*KH

H0= W/U $ H02= H0*H0 $ LH= L02*LB2*LNU2 $ BI2B2]=

$ PI=3o141590 $ PI02= 1o570796 $
$ A= IF CYL EQL 0 THEN 0o010 ELSE

A2=A*A $ J= <0,i> $

FOR N=(l,l,9) DO BEGIN READ(Q4,Q5,Q6,Q7) $

(K02*LH*L02)*KP $ BI2B6P = L02*LH*K02*KH $ SUMSIZE=0 $

IF PRES EQL 0 THEN BEGIN BC=FNBRG(BC,-I) $

WRITE(BC,SRT(BC,I), TN,-1,0,0,0,0,1) $ END $

B20=FNBRG(BC,0) $ WRITE(B20,SRT(B20,1),TN,0,0,0,0;0.

ROOTEST) $ B21= IF ROOTEST EQL 0 THEN FNBRG(BC,1)

ELSE FNBRG(B20,!) $ IF ROOTEST EQL 0 THEN B21=FNBRG(BCI,1)_

BCI=B21 $ RAP=RFORM(AP) $ WRITE(B21,SRT(B_I,?!.)_

TN,I,RAP,0,0,ROOTEST) $ IF ABS(REAL(B20-B2i))
GTR0o09*ABS(REAL(B20)) THEN STi=l $ IF ABS(IMAG(B20-B21))

GTR 0o09*ABS(IMAG(B20)) THEN STI=I $

IF ST1 EQL ITHEN BEGIN B22= IF ROOTEST EQL 0 THEN

FNBRG(B22,2) ELSE FNBRG(B21,2) $
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I RAP=RFORM(AP) $ RAQ=RFORM(AQ) $
WRITE(B22,SRT(B22,1),TN,2,RAP,RAQ,ROOTEST)
ST1=0 $ END $ WRITE('1') $

IF ST2 EQL 0 THEN B22=B21 $ ST2=I $

ST1=0 $ Q4=ZFIELDS(B22) $
END $

END $
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_;nlor flip _louil nnmber. AI_o. when opplirnblP, qhnw tb.t
nptlonlll mnrkinl_,_ hAvl_ been ll_e+l for (;roup ,1 nnlt (;ro.p 4

n_i hilt h +It ii:e<l.

3. lil':l'OliT 1TI'I.F,: F;nt+'r Ihm ,.nmplr.h. r+_port till+ in till

(:n +itnl I{'lterq. 'l'illr'm in nil I+'ll ql+!! "l'"'tl4 I)e un('lmsmifird.

II n m+'nninl.fu till+, i+'rln|1ot Ill" _l' c.'t+'+l wilho.t rlrlmmlfi+++-

linn, re|low lille rlllm._i+ic+_lion in nll i+.pilnlq in pnrrnthl-mim

immnlliAl+_ly follnwin b, thr tilh'.

4. I)l_,._f:llll)TlVl "', Ni)'I'F;_4: I| npllrnprinit', ,-nler t._ ty_e n|

re.port, r._., interim, rrnl_rem'i, milmm_iz_,..nnunl, nr |innh
(;;vP Ihi_ ;n+:hlqivP dlltem whrn n mp_'t:i/i(: rPpnltinr, period im

5. Alrl'lll'lR(._): l';.Irr till! nltnt+.(q) OJ nulhor(l_) n_i .ilnwn o11

nr in th,_ _eWitt. J';nlPr hi.it nnm<., lir_l nnml% miJJIP i.itiltl.

If mililnr_'. ,bow r.lnk .n,I l,r.n+-h of ._Prvi,'l'. 'l'h+, nnme _|

the prin_ip.l nlllhi_r iq nn .,l..,,h,tr minimnm ri.qnitemrnl.

6. IIF:I'iilIT IIKII+:: l;,ltPr the dote. o| IliP +l-lmrt n_ dny,

m+lnlll, yPiil, ol inllillh, yl-.lr. !1 lllnlP thin nnP llllle nppPnrl

on the l_porl, nip dllil_ ell llliblli.nli+m.

In. TOTAl. NIIMlit:II Ot" PA(;I':_: The Inlnl pole cn_lnl

_dlnllld follow noimill tlil_in:ltlnn lllOpelhlrl_l.i, i.l% l f+nl+t ill_

nlllnblPr oi lin_l-_ll Clllllllinlll|_ l iilformillion.

lb. NIIMIII']Ii ()t" III':I"F;IIF:NCi':_: _':nt,'¢ {h" I,)ln'l nllnlner oi

r+|rrenel._ riterl in lhe tPp+'ift.

ll,1. (:(iN+IIIA(:T O11 (;IIANT NIIMIII<li: If npplnlirinlPt Pnl+,"

Ih+ llllllli('llhl++ nnlnliPr of the pnnlinel or _r_nt lln(_e: whirh

the report wn_l wrillPn.

Oh, fir, I lid. ;'IIIIJI:f;T NIIPdlII':II: t:ntr+ tll_,npl+rnl,rinl+.

militnry lti.pnllmPnl l,ll.ntilil-ntlo., lill.h o_ +toil.el nlllTibpi_

.qilhprniePt riilmliPr, lyllPm lilimhf, rl_ Inlil limber, rt(:.

lo. OIIICINATOII'._ II_:P(II1T NIIP, IIII:R(S): Fni+r the .7(i-

el,II lrpl+il nlinlltrr lly whi_'h ihr ltn<!lltnPnl will be id_nlifiPd

nnd r_ntrnlh',l by Ill+ _ nriginniln_ n,:llvll 7. "l'lilq .'lllmbPr mllll

be lliii+lliO in thiq rPilo¢l.

9h. OTIII':R nt:l'0111' NIIMIIF:ilI_v: If the rP_lnct li_pi llr<.il

llllitn(-il lily nth0'l leport nllml+prql (¢if_Pr hi' I#li" lirl_llllll'_lr

or _/ I_e ._pnnx*)rJ, _]qo +Bier Ihi_l r+nlill,r;i_).

!0. AVAII.AI]II,rFY/I.IMITATION N(TII(:F;S: I':nter nny Iiml-

Inllon+i on |lirtbrr di.,.-+minnlinn +if ih+_ rl-pflrl0 nthrl thnli Iholl"

impr, qP,l hy _lPi.llrity doq.qfi+'otlon, ll'linll _ +itnnl_nrtt lltnlrmPnll

nll_h nil:

(I) "l),mllfirJ rr nester++ tony nblnin i-npi,._ ni thiq

it-port from l)l_l:."

(2) "l"orPi!_n nnniilln<.¢-ment nnd diq.il-minnlinn ni thi._

repnrt by 111)(; i_ nnl nnlhnrilr*l.'"

{3) "ll. S. (;nvernm,-nt nt_j-n,:iP_,l mny obtnin ('Ol,ie_ oi

lbiq report dlrP,.lly Irnnl Ill)(:. Olhrr +lumlilirJ I)|)M

u.qPrl mhmll r(TflllPllll thr+ulgh

....... +*i

(4) "!1. 5. milltnry lt_.rni:il-_t mny nhlnin <:opium of Ihim

rrpnrt direr'fly frnm I)I)<L Other q.nllfh-+l u_i-r_

_hnll refill+it Ihr_illli

.................................

(5) "'All dlP_lrlblitinn ,,1' thiq rPpnrt i_l i.onlrnllPJ. O.mli+

fira I)IIC ._+r_ nhnll rO+llil_qt ihr.ngh

If th+ repnrl hl_q been (i.rni'_hrd In the Olfir," of "l'+-,-hnlrol

.%rrvir:r_, I)_.pnrtm+nt n| (:omm_'rrr. for _nl_ to Illn p.t,lic, in_ll-

I:ott, Ibi-i fnet nnll rntl, r thl_ prif_e, if llnnwn.

I I.._IIPI'I.F.MF;N'I:AIIY i_lo'rl.;,_.: lime t nr nddilionnl +IpInn_-

i_lry nnl (. ft.

12.._III)NHOIIING MII,ITAIIY AI:I+IVITY: F:ntPr IhP iinmr ,ll

She drli+irtm+ntlll pr++j+',:t of fir'+ or Inbni+llory mliiin++irin _ (plly-

Ing _l_r) the rl-._en.:h And dew-hipml-nt. In(:h,,l+" nllllrP,_.l.

13. AII_TRAGT: f:nler nn oh*if+let Riving n brir| nn+l Ini'tliRl

iqummnry n[ the rJol'nment indil_ntivP n[ tile rPporl, rvPn

Ihnlli_ll i't mlly nh,l. npllr'nr rl_rwhrre in the I.-Jy ol Ih_" trrh-

nlrnirrlnrl. If ndilillnnnl +,lmr'r i_, rl'qisir+d, e i-onlinunlillr,
..,h+ri _hnll he ltlln,:h+'(I.

li i+_ hip, hiy d+-+ir+_hlP Ihnl Ih+ nii_lrn+_l +if ,'l._iliP_ re+

pnrl+ lie linl:ln++illed. I']nrh pnrngr._ldl nl the nb+irn++i *ll+_h

,_.il with nn indi<'+lli+ll nf ti." mililnry tPl'_irlty rln'_'qfi<'nti..

(if Ibm inf++rmnti_n in thn pnrngrnph, ri-prp.P.tpli ll* (T._.), (S),

(C), ,_r (I/).

"il'h+r_+ i_ no tlmitlltlnn on the Ienj,+tll n( the nh_lrnrt. II<lw-
evl+r, the mlip+l_r'mlell iPnglh i'_ frnm I._ to 225 w<irilm.

14. KKY W(]llr)s: Key wordm nre iPi:hni('lllly Iril-n,]ill_+ll] trlm#i

lie imilort phrn*rq lhnl rhrlrnrterilP n rei--_rl nnd tony ill_ llqlPd _m

inrll'll rnlril'.i for _iitnlnging tiiP tel+nit. Kl'y wnrit-I nlllll lie"

_Plt-riPd P_n light nn qri'iirily +Jn_,.+llh-nlion i_ IP_tilitP+i. Id+'nli-

Iipr_. filth n-t Pc ni .nerll nmJ_l dP_il;nni i_il+ trn<i_ ._m.. mill-
Inry llr+li_rt +nile. nnrnp i#P_l_rnll|li_" /n(-nl inn mill, be iiPlrl| ti, I• • • 0 .
k,'y wnrdq bllt will I,+ l.li_,wPil by nn in+lirnllnn of It< hn.-ell

cnnIPllo The" llmmil:nrni-nt o| linlin, rulPm0 nnd wrightm iM

_pti,_nnl.
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